Properties

Label 864.4673.6.g1.b1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,9), (7,10)(8,9), (7,8)(9,10), (1,2)(3,6)(4,5), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_4\times S_3^2$
Normal closure:$C_6^2:D_6$
Core:$C_6\times D_6$
Minimal over-subgroups:$C_6^2:D_6$$D_4\times S_3^2$
Maximal under-subgroups:$C_6\times D_6$$C_6\times D_6$$S_3\times C_{12}$$C_6\wr C_2$$C_3\times D_{12}$$D_4\times C_3^2$$C_6\wr C_2$$C_6\times D_4$$S_3\times D_4$
Autjugate subgroups:864.4673.6.g1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_4\times S_3^2$