Subgroup ($H$) information
Description: | $C_{12}:D_6$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(8,9), (7,10)(8,9), (7,8)(9,10), (1,2)(3,6)(4,5), (2,5,6), (1,3,4)(2,6,5)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $S_4\times S_3^2$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $1$ |
Projective image | $S_4\times S_3^2$ |