Properties

Label 864.4673.2.a1.b1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,9), (7,10)(8,9), (8,10,9), (7,8)(9,10), (1,2)(3,6)(4,5), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$S_4\times S_3^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$S_4\times S_3^2$
Maximal under-subgroups:$C_6^2:C_6$$C_3^2\times S_4$$C_3^2:S_4$$S_3\times S_4$$C_6\times S_4$$C_{12}:D_6$$C_3\times S_3^2$
Autjugate subgroups:864.4673.2.a1.a1

Other information

Möbius function$-1$
Projective image$S_4\times S_3^2$