Properties

Label 864.4673.1.a1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6), (8,9), (7,10)(8,9), (3,4)(5,6), (8,10,9), (7,8)(9,10), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, and rational.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4\times S_3^2$
Complements:$C_1$
Maximal under-subgroups:$C_6^2:D_6$$C_6^2:D_6$$A_4:S_3^2$$A_4:S_3^2$$A_4\times S_3^2$$C_6^2:D_6$$A_4:S_3^2$$D_6\times S_4$$D_6\times S_4$$D_4\times S_3^2$$S_3^3$

Other information

Möbius function$1$
Projective image$S_4\times S_3^2$