Properties

Label 864.4673.4.f1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6), (8,9), (3,4)(5,6), (8,10,9), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3^3:C_2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3^3$
Normal closure:$S_4\times S_3^2$
Core:$S_3^2$
Minimal over-subgroups:$S_4\times S_3^2$
Maximal under-subgroups:$C_3\times S_3^2$$C_3\times S_3^2$$C_3:S_3^2$$C_3:S_3^2$$C_3\times S_3^2$$C_3:S_3^2$$C_3:S_3^2$$S_3\times D_6$$S_3\times D_6$$S_3\times D_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$S_4\times S_3^2$