Subgroup ($H$) information
Description: | $A_4:S_3^2$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Index: | \(2\) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,2)(3,5)(4,6), (7,10)(8,9), (3,4)(5,6)(8,9), (8,10,9), (7,8)(9,10), (2,5,6), (1,3,4)(2,6,5)\rangle$
|
Derived length: | $3$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
Description: | $S_4\times S_3^2$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$\operatorname{res}(S)$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $S_4\times S_3^2$ |