Properties

Label 864.4673.16.a1.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_3^2$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6), (8,10,9), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$S_3^3$
Normal closure:$C_6^2:C_6$
Core:$C_3\times S_3$
Minimal over-subgroups:$C_6^2:C_6$$C_3\times S_3^2$$C_3:S_3^2$$C_3\times S_3^2$
Maximal under-subgroups:$C_3^3$$C_3\times S_3$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$
Autjugate subgroups:864.4673.16.a1.b1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-2$
Projective image$S_4\times S_3^2$