Properties

Label 864.4673.12.i1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{12}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6), (7,8,10,9), (7,10)(8,9), (2,5,6), (1,3,4)(2,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_4\times S_3^2$
Normal closure:$C_6^2:D_6$
Core:$C_3\times S_3$
Minimal over-subgroups:$S_3\times D_{12}$$C_{12}:D_6$$C_4\times S_3^2$
Maximal under-subgroups:$C_6\times S_3$$C_3\times C_{12}$$C_3:C_{12}$$C_2\times C_{12}$$C_4\times S_3$
Autjugate subgroups:864.4673.12.i1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$S_4\times S_3^2$