-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '864.4673', 'ambient_counter': 4673, 'ambient_order': 864, 'ambient_tex': 'S_4\\times S_3^2', 'central': False, 'central_factor': False, 'centralizer_order': 12, 'characteristic': False, 'core_order': 18, 'counter': 78, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '864.4673.12.i1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '12.i1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 12, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '72.27', 'subgroup_hash': 27, 'subgroup_order': 72, 'subgroup_tex': 'S_3\\times C_{12}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '864.4673', 'aut_centralizer_order': 12, 'aut_label': '12.i1', 'aut_quo_index': None, 'aut_stab_index': 6, 'aut_weyl_group': '24.14', 'aut_weyl_index': 72, 'centralizer': '72.bb1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['6.f1.a1', '6.g1.a1', '6.m1.a1'], 'contains': ['24.f1.a1', '24.t1.a1', '24.u1.b1', '36.e1.a1', '36.o1.a1'], 'core': '48.a1.a1', 'coset_action_label': None, 'count': 3, 'diagramx': [9753, -1, 4003, -1, 5699, -1, 5843, -1], 'generators': [374400, 10, 23, 126840, 897120], 'label': '864.4673.12.i1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '2.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '3.b1.a1', 'old_label': '12.i1.a1', 'projective_image': '864.4673', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '12.i1.a1', 'subgroup_fusion': None, 'weyl_group': '24.14'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 2, 2, 2, 3], 'aut_gens': [[1, 6], [37, 66], [1, 42], [41, 6], [5, 42], [25, 6]], 'aut_group': '48.51', 'aut_hash': 51, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 9, 'aut_perms': [41041, 90720, 24, 131784, 3], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 1, 2, 1], [4, 3, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 4, 1], [12, 1, 4, 1], [12, 2, 2, 1], [12, 2, 4, 1], [12, 3, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\times D_6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [3, 1, 2], [3, 2, 3], [4, 1, 2], [4, 3, 2], [6, 1, 2], [6, 2, 3], [6, 3, 4], [12, 1, 4], [12, 2, 6], [12, 3, 4]], 'center_label': '12.2', 'center_order': 12, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 27, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['4.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [4, 1, 2, 1], [4, 3, 2, 1], [6, 1, 2, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 3, 2, 2], [12, 1, 4, 1], [12, 2, 2, 1], [12, 2, 4, 1], [12, 3, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 12, 'exponents_of_order': [3, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 4]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '36.12', 'hash': 27, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 30], [49, 6]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 4, 'irrep_stats': [[1, 24], [2, 12]], 'label': '72.27', 'linC_count': 4, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 28, 'linQ_dim': 6, 'linQ_dim_count': 28, 'linR_count': 10, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'S3*C12', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 16, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 36, 'number_divisions': 18, 'number_normal_subgroups': 22, 'number_subgroup_autclasses': 31, 'number_subgroup_classes': 35, 'number_subgroups': 58, 'old_label': None, 'order': 72, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 7], [3, 8], [4, 8], [6, 20], [12, 28]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[5, 6], [1, 42], [37, 6]], 'outer_group': '8.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [1, 6, 120], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 10, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [4, 5], [8, 1]], 'representations': {'PC': {'code': 1042831902776745, 'gens': [1, 3], 'pres': [5, -2, -3, -2, -2, -3, 10, 452, 42, 1203, 58, 1204]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101739926298686, 41624330840588829]}, 'GLFp': {'d': 2, 'p': 13, 'gens': [182, 21974, 4396]}, 'Perm': {'d': 10, 'gens': [367921, 811440, 144, 367920, 3]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 12], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'S_3\\times C_{12}', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 2, 3, 3, 3, 2, 2], 'aut_gens': [[374400, 379560, 2, 3, 856920, 1210440, 7, 16], [374400, 379560, 2, 3, 856920, 897120, 7, 16], [379560, 374400, 2, 3, 897120, 1250640, 7, 16], [374400, 379560, 2, 4, 856920, 1210440, 16, 7], [374400, 379560, 2, 3, 1250640, 897120, 7, 16], [374400, 379560, 5, 3, 856920, 1210440, 23, 7], [1588320, 379560, 2, 3, 856920, 1210440, 7, 16], [1901640, 1538640, 2, 3, 856920, 1210440, 7, 16], [374400, 379560, 21, 20, 856920, 1210440, 7, 16], [374400, 379560, 2, 12, 856920, 1210440, 7, 16]], 'aut_group': '1728.47847', 'aut_hash': 47847, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1728, 'aut_permdeg': 12, 'aut_perms': [163699200, 126672057, 29441070, 163861344, 29440352, 163735353, 445295811, 22182248, 22184166], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [2, 3, 2, 1], [2, 6, 1, 1], [2, 9, 1, 1], [2, 9, 2, 1], [2, 18, 2, 1], [2, 27, 1, 1], [2, 54, 1, 1], [3, 2, 2, 1], [3, 4, 1, 1], [3, 8, 1, 1], [3, 16, 2, 1], [3, 32, 1, 1], [4, 6, 1, 1], [4, 18, 2, 1], [4, 54, 1, 1], [6, 6, 2, 2], [6, 12, 1, 1], [6, 12, 2, 1], [6, 18, 2, 1], [6, 24, 1, 1], [6, 24, 2, 1], [6, 36, 2, 1], [6, 48, 2, 1], [6, 72, 1, 1], [12, 12, 2, 1], [12, 24, 1, 1], [12, 36, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'D_6^2:D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '1728.47847', 'autcentquo_hash': 47847, 'autcentquo_nilpotent': False, 'autcentquo_order': 1728, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'D_6^2:D_6', 'cc_stats': [[1, 1, 1], [2, 3, 3], [2, 6, 1], [2, 9, 3], [2, 18, 2], [2, 27, 1], [2, 54, 1], [3, 2, 2], [3, 4, 1], [3, 8, 1], [3, 16, 2], [3, 32, 1], [4, 6, 1], [4, 18, 2], [4, 54, 1], [6, 6, 4], [6, 12, 3], [6, 18, 2], [6, 24, 3], [6, 36, 2], [6, 48, 2], [6, 72, 1], [12, 12, 2], [12, 24, 1], [12, 36, 2]], 'center_label': '1.1', 'center_order': 1, 'central_product': True, 'central_quotient': '864.4673', 'commutator_count': 1, 'commutator_label': '108.41', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 4673, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['24.12', 1], ['6.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 3], [2, 6, 1, 1], [2, 9, 1, 3], [2, 18, 1, 2], [2, 27, 1, 1], [2, 54, 1, 1], [3, 2, 1, 2], [3, 4, 1, 1], [3, 8, 1, 1], [3, 16, 1, 2], [3, 32, 1, 1], [4, 6, 1, 1], [4, 18, 1, 2], [4, 54, 1, 1], [6, 6, 1, 4], [6, 12, 1, 3], [6, 18, 1, 2], [6, 24, 1, 3], [6, 36, 1, 2], [6, 48, 1, 2], [6, 72, 1, 1], [12, 12, 1, 2], [12, 24, 1, 1], [12, 36, 1, 2]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 80640, 'exponent': 12, 'exponents_of_order': [5, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '864.4673', 'hash': 4673, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 2, 2, 3, 3, 3, 2, 2], 'inner_gens': [[374400, 379560, 2, 3, 856920, 897120, 7, 16], [374400, 379560, 2, 3, 1250640, 1210440, 7, 16], [374400, 379560, 2, 4, 856920, 1210440, 16, 7], [374400, 379560, 1, 3, 856920, 1210440, 16, 23], [374400, 1951320, 2, 3, 856920, 1210440, 7, 16], [1901640, 379560, 2, 3, 856920, 1210440, 7, 16], [374400, 379560, 21, 20, 856920, 1210440, 7, 16], [374400, 379560, 21, 11, 856920, 1210440, 7, 16]], 'inner_hash': 4673, 'inner_nilpotent': False, 'inner_order': 864, 'inner_split': True, 'inner_tex': 'S_4\\times S_3^2', 'inner_used': [1, 2, 3, 4, 5, 6, 7], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 8], [2, 12], [3, 8], [4, 6], [6, 8], [8, 1], [12, 2]], 'label': '864.4673', 'linC_count': 144, 'linC_degree': 7, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 7, 'linQ_degree_count': 144, 'linQ_dim': 7, 'linQ_dim_count': 144, 'linR_count': 144, 'linR_degree': 7, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'S4*S3^2', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 30, 'number_characteristic_subgroups': 18, 'number_conjugacy_classes': 45, 'number_divisions': 45, 'number_normal_subgroups': 48, 'number_subgroup_autclasses': 380, 'number_subgroup_classes': 605, 'number_subgroups': 6740, 'old_label': None, 'order': 864, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 159], [3, 80], [4, 96], [6, 408], [12, 120]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[379560, 374400, 2, 4, 897120, 1250640, 16, 7]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 10, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 12], [3, 8], [4, 6], [6, 8], [8, 1], [12, 2]], 'representations': {'PC': {'code': 36580756201620780868174227814105063260525675172885, 'gens': [1, 2, 3, 5, 7], 'pres': [8, 2, 2, 2, 3, 2, 3, 2, 3, 250, 66, 267, 5540, 2668, 116, 1173, 40326, 6062, 9094, 1542, 166, 36871]}, 'GLZN': {'d': 2, 'p': 60, 'gens': [10282343, 218731, 346333, 325801, 6804031, 217201, 4269059, 6858916]}, 'Perm': {'d': 10, 'gens': [374400, 379560, 2, 3, 856920, 1210440, 7, 16]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'S_4\\times S_3^2', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}