Properties

Label 864.4673.9.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6), (8,9), (7,10)(8,9), (3,4)(5,6), (8,10,9), (7,8)(9,10)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times S_4$
Normal closure:$S_4\times S_3^2$
Core:$S_4$
Minimal over-subgroups:$D_6\times S_4$$D_6\times S_4$
Maximal under-subgroups:$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_2^2\times A_4$$C_2\times S_4$$C_2\times S_4$$C_2^2\times D_4$$C_2\times D_6$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$S_4\times S_3^2$