Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
135.2-a1 135.2-a Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1405028055.140502805 2.438354577 336226135a1062059135 \frac{336226}{135} a - \frac{1062059}{135} [1 \bigl[1 , a+1 -a + 1 , a a , 8 8 , 22a69] -22 a - 69\bigr] y2+xy+ay=x3+(a+1)x2+8x22a69{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+8{x}-22a-69
135.2-a2 135.2-a Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1405028055.140502805 2.438354577 1564157666333645a+98945821613729 -\frac{156415766633}{3645} a + \frac{98945821613}{729} [1 \bigl[1 , a+1 -a + 1 , a a , 55a167 -55 a - 167 , 336a1064] -336 a - 1064\bigr] y2+xy+ay=x3+(a+1)x2+(55a167)x336a1064{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-55a-167\right){x}-336a-1064
135.2-b1 135.2-b Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.4592885550.459288555 16.2443398616.24433986 2.359324574 10263043645a+949568729 \frac{1026304}{3645} a + \frac{949568}{729} [0 \bigl[0 , a+1 a + 1 , 0 0 , 4a10 -4 a - 10 , 10a32] -10 a - 32\bigr] y2=x3+(a+1)x2+(4a10)x10a32{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-4a-10\right){x}-10a-32
135.2-b2 135.2-b Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6889328330.688932833 3.6098533023.609853302 2.359324574 66006784375a+226222784375 -\frac{66006784}{375} a + \frac{226222784}{375} [a \bigl[a , a a , 1 1 , 16a62 -16 a - 62 , 113a373] -113 a - 373\bigr] y2+axy+y=x3+ax2+(16a62)x113a373{y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-16a-62\right){x}-113a-373
135.2-b3 135.2-b Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2296442770.229644277 32.4886797232.48867972 2.359324574 1217792135a+4608704135 \frac{1217792}{135} a + \frac{4608704}{135} [a \bigl[a , a a , 1 1 , a2 -a - 2 , 0] 0\bigr] y2+axy+y=x3+ax2+(a2)x{y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-a-2\right){x}
135.2-b4 135.2-b Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.3778656671.377865667 1.8049266511.804926651 2.359324574 74932775168225a+4739162579245 \frac{74932775168}{225} a + \frac{47391625792}{45} [0 \bigl[0 , a+1 a + 1 , 0 0 , 304a970 -304 a - 970 , 5610a17760] -5610 a - 17760\bigr] y2=x3+(a+1)x2+(304a970)x5610a17760{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-304a-970\right){x}-5610a-17760
135.2-c1 135.2-c Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1931733110.193173311 13.3712009213.37120092 1.633606813 61844976773645a+195580825333645 -\frac{6184497677}{3645} a + \frac{19558082533}{3645} [1 \bigl[1 , a a , 0 0 , 4a+4 4 a + 4 , 5a+41] 5 a + 41\bigr] y2+xy=x3+ax2+(4a+4)x+5a+41{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(4a+4\right){x}+5a+41
135.2-c2 135.2-c Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3863466230.386346623 26.7424018426.74240184 1.633606813 211922135a+6410527 \frac{211922}{135} a + \frac{64105}{27} [1 \bigl[1 , a a , 0 0 , a1 -a - 1 , 0] 0\bigr] y2+xy=x3+ax2+(a1)x{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-a-1\right){x}
135.2-d1 135.2-d Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1988842531.198884253 3.1022934403.102293440 4.704572026 2489708818225 \frac{24897088}{18225} [0 \bigl[0 , a+1 a + 1 , 0 0 , 48a+174 -48 a + 174 , 226a676] 226 a - 676\bigr] y2=x3+(a+1)x2+(48a+174)x+226a676{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-48a+174\right){x}+226a-676
135.2-d2 135.2-d Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.3977685062.397768506 6.2045868816.204586881 4.704572026 3659436816875 \frac{36594368}{16875} [a \bigl[a , a a , 1 1 , 15a43 15 a - 43 , 21a67] 21 a - 67\bigr] y2+axy+y=x3+ax2+(15a43)x+21a67{y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(15a-43\right){x}+21a-67
135.2-e1 135.2-e Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0880057460.088005746 3.1022934403.102293440 2.072073465 2489708818225 \frac{24897088}{18225} [a \bigl[a , a+1 -a + 1 , 1 1 , 15a+50 -15 a + 50 , 7a+24] -7 a + 24\bigr] y2+axy+y=x3+(a+1)x2+(15a+50)x7a+24{y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-15a+50\right){x}-7a+24
135.2-e2 135.2-e Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0440028730.044002873 6.2045868816.204586881 2.072073465 3659436816875 \frac{36594368}{16875} [0 \bigl[0 , a1 -a - 1 , 0 0 , 56a190 56 a - 190 , 242a728] 242 a - 728\bigr] y2=x3+(a1)x2+(56a190)x+242a728{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(56a-190\right){x}+242a-728
135.2-f1 135.2-f Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1740213520.174021352 13.3712009213.37120092 4.414933890 61844976773645a+195580825333645 -\frac{6184497677}{3645} a + \frac{19558082533}{3645} [a \bigl[a , a+1 -a + 1 , a a , 13a+5 13 a + 5 , 48a+178] 48 a + 178\bigr] y2+axy+ay=x3+(a+1)x2+(13a+5)x+48a+178{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a+5\right){x}+48a+178
135.2-f2 135.2-f Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3480427040.348042704 26.7424018426.74240184 4.414933890 211922135a+6410527 \frac{211922}{135} a + \frac{64105}{27} [a \bigl[a , a+1 -a + 1 , a a , 7a15 -7 a - 15 , 8a+30] 8 a + 30\bigr] y2+axy+ay=x3+(a+1)x2+(7a15)x+8a+30{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-15\right){x}+8a+30
135.2-g1 135.2-g Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 1.6611924391.661192439 16.2443398616.24433986 2.844466074 10263043645a+949568729 \frac{1026304}{3645} a + \frac{949568}{729} [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 4a1 -4 a - 1 , 3a+1] -3 a + 1\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(4a1)x3a+1{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-1\right){x}-3a+1
135.2-g2 135.2-g Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.4917886592.491788659 3.6098533023.609853302 2.844466074 66006784375a+226222784375 -\frac{66006784}{375} a + \frac{226222784}{375} [0 \bigl[0 , a1 -a - 1 , 0 0 , 68a266 -68 a - 266 , 506a1784] -506 a - 1784\bigr] y2=x3+(a1)x2+(68a266)x506a1784{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-68a-266\right){x}-506a-1784
135.2-g3 135.2-g Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 0.8305962190.830596219 32.4886797232.48867972 2.844466074 1217792135a+4608704135 \frac{1217792}{135} a + \frac{4608704}{135} [0 \bigl[0 , a1 -a - 1 , 0 0 , 8a26 -8 a - 26 , 38a+120] 38 a + 120\bigr] y2=x3+(a1)x2+(8a26)x+38a+120{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-8a-26\right){x}+38a+120
135.2-g4 135.2-g Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 4.9835773194.983577319 1.8049266511.804926651 2.844466074 74932775168225a+4739162579245 \frac{74932775168}{225} a + \frac{47391625792}{45} [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 79a241 -79 a - 241 , 658a2080] -658 a - 2080\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(79a241)x658a2080{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-79a-241\right){x}-658a-2080
135.2-h1 135.2-h Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1405028055.140502805 0.812784859 336226135a1062059135 \frac{336226}{135} a - \frac{1062059}{135} [a \bigl[a , a a , 0 0 , 7a+22 7 a + 22 , 154a487] -154 a - 487\bigr] y2+axy=x3+ax2+(7a+22)x154a487{y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(7a+22\right){x}-154a-487
135.2-h2 135.2-h Q(10)\Q(\sqrt{10}) 335 3^{3} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1405028055.140502805 0.812784859 1564157666333645a+98945821613729 -\frac{156415766633}{3645} a + \frac{98945821613}{729} [a \bigl[a , a a , 0 0 , 213a678 -213 a - 678 , 3366a10647] -3366 a - 10647\bigr] y2+axy=x3+ax2+(213a678)x3366a10647{y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-213a-678\right){x}-3366a-10647
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.