Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.2-a over \(\Q(\sqrt{10}) \)
Isogeny class 135.2-a contains 2 curves linked by isogenies of degree 2.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)