Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
gp: K = nfinit(Polrev([-10, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([-190,56]),K([-728,242])])
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-190,56]),Polrev([-728,242])], K);
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![-190,56],K![-728,242]]);
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-3a+15)\) | = | \((3,a+1)^{2}\cdot(3,a+2)\cdot(5,a)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 135 \) | = | \(3^{2}\cdot3\cdot5\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-8640000a+39960000)\) | = | \((2,a)^{12}\cdot(3,a+1)^{9}\cdot(3,a+2)^{3}\cdot(5,a)^{8}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 850305600000000 \) | = | \(2^{12}\cdot3^{9}\cdot3^{3}\cdot5^{8}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
Minimal discriminant: | \((-135000a+624375)\) | = | \((3,a+1)^{9}\cdot(3,a+2)^{3}\cdot(5,a)^{8}\) |
Minimal discriminant norm: | \( 207594140625 \) | = | \(3^{9}\cdot3^{3}\cdot5^{8}\) |
j-invariant: | \( \frac{36594368}{16875} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-39 a + 124 : -615 a + 1950 : 1\right)$ |
Height | \(0.044002873439634936404487914008764529405\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(a - 1 : 0 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.044002873439634936404487914008764529405 \) | ||
Period: | \( 6.2045868810681273758988873370670014102 \) | ||
Tamagawa product: | \( 96 \) = \(1\cdot2^{2}\cdot3\cdot2^{3}\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 2.0720734656171044086821131151390677875 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(1\) | \(I_0\) | Good | \(1\) | \(0\) | \(0\) | \(0\) |
\((3,a+1)\) | \(3\) | \(4\) | \(I_{3}^{*}\) | Additive | \(-1\) | \(2\) | \(9\) | \(3\) |
\((3,a+2)\) | \(3\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
\((5,a)\) | \(5\) | \(8\) | \(I_{8}\) | Split multiplicative | \(-1\) | \(1\) | \(8\) | \(8\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
135.2-e
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.