Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.2-c over \(\Q(\sqrt{10}) \)
Isogeny class 135.2-c contains 2 curves linked by isogenies of degree 2.
Curve label | Weierstrass Coefficients |
---|---|
135.2-c1 | \( \bigl[1\) , \( a\) , \( 0\) , \( 4 a + 4\) , \( 5 a + 41\bigr] \) |
135.2-c2 | \( \bigl[1\) , \( a\) , \( 0\) , \( -a - 1\) , \( 0\bigr] \) |
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)