Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.2-g over \(\Q(\sqrt{10}) \)
Isogeny class 135.2-g contains 4 curves linked by isogenies of degrees dividing 6.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 6 & 2 & 3 \\ 6 & 1 & 3 & 2 \\ 2 & 3 & 1 & 6 \\ 3 & 2 & 6 & 1 \end{array}\right)\)