Learn more

Refine search


Results (1-50 of 4124 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
6.1-a1 6.1-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $0.136429462$ 1.056998213 \( \frac{574055084970269951}{6} a - \frac{907661070264560078}{3} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 1263 a - 8032\) , \( 62956 a - 305877\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(1263a-8032\right){x}+62956a-305877$
6.1-a2 6.1-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $6.685043672$ 1.056998213 \( \frac{7261339}{34992} a + \frac{5642407}{8748} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 3 a + 8\) , \( 4 a + 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(3a+8\right){x}+4a+3$
6.1-b1 6.1-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $0.136429462$ 1.056998213 \( \frac{574055084970269951}{6} a - \frac{907661070264560078}{3} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( 314 a - 2006\) , \( 8873 a - 39813\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(314a-2006\right){x}+8873a-39813$
6.1-b2 6.1-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\Z/7\Z$ $1$ $6.685043672$ 1.056998213 \( \frac{7261339}{34992} a + \frac{5642407}{8748} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -a + 4\) , \( -a - 3\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+4\right){x}-a-3$
6.2-a1 6.2-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $0.136429462$ 1.056998213 \( -\frac{574055084970269951}{6} a - \frac{907661070264560078}{3} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -2741954 a - 8670817\) , \( -4394335877 a - 13896110178\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-2741954a-8670817\right){x}-4394335877a-13896110178$
6.2-a2 6.2-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $6.685043672$ 1.056998213 \( -\frac{7261339}{34992} a + \frac{5642407}{8748} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -374 a - 1177\) , \( -86489 a - 273498\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-374a-1177\right){x}-86489a-273498$
6.2-b1 6.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\mathsf{trivial}$ $1$ $0.136429462$ 1.056998213 \( -\frac{574055084970269951}{6} a - \frac{907661070264560078}{3} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -315 a - 2006\) , \( -8874 a - 39813\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-315a-2006\right){x}-8874a-39813$
6.2-b2 6.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3 \) $0$ $\Z/7\Z$ $1$ $6.685043672$ 1.056998213 \( -\frac{7261339}{34992} a + \frac{5642407}{8748} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 4\) , \( -3\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+4{x}-3$
12.1-a1 12.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $19.19785289$ 1.517723533 \( -\frac{1957662404}{6561} a + \frac{6190492076}{6561} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a - 42\) , \( 390 a + 1238\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a-42\right){x}+390a+1238$
12.1-a2 12.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $19.19785289$ 1.517723533 \( -\frac{77824}{9} a + \frac{262144}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 7\) , \( -3 a - 12\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-7\right){x}-3a-12$
12.1-a3 12.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $38.39570578$ 1.517723533 \( \frac{2053600}{81} a + \frac{6678128}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -34 a - 102\) , \( 162 a + 510\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-34a-102\right){x}+162a+510$
12.1-a4 12.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $19.19785289$ 1.517723533 \( \frac{37287936100}{9} a + \frac{117914819012}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -534 a - 1682\) , \( 11534 a + 36470\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-534a-1682\right){x}+11534a+36470$
12.1-b1 12.1-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z$ $0.131320837$ $19.19785289$ 1.195852355 \( -\frac{1957662404}{6561} a + \frac{6190492076}{6561} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -5 a - 11\) , \( 50 a + 161\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-5a-11\right){x}+50a+161$
12.1-b2 12.1-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z$ $0.131320837$ $19.19785289$ 1.195852355 \( -\frac{77824}{9} a + \frac{262144}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -14 a - 39\) , \( a + 5\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-14a-39\right){x}+a+5$
12.1-b3 12.1-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.262641675$ $38.39570578$ 1.195852355 \( \frac{2053600}{81} a + \frac{6678128}{81} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -10 a - 26\) , \( 24 a + 80\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-10a-26\right){x}+24a+80$
12.1-b4 12.1-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/4\Z$ $0.525283350$ $19.19785289$ 1.195852355 \( \frac{37287936100}{9} a + \frac{117914819012}{9} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -135 a - 421\) , \( 1518 a + 4805\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-135a-421\right){x}+1518a+4805$
12.2-a1 12.2-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $19.19785289$ 1.517723533 \( -\frac{37287936100}{9} a + \frac{117914819012}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 202 a + 638\) , \( 1306 a + 4130\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(202a+638\right){x}+1306a+4130$
12.2-a2 12.2-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $38.39570578$ 1.517723533 \( -\frac{2053600}{81} a + \frac{6678128}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -58 a - 182\) , \( 294 a + 930\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-58a-182\right){x}+294a+930$
12.2-a3 12.2-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $19.19785289$ 1.517723533 \( \frac{77824}{9} a + \frac{262144}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -28 a - 87\) , \( -107 a - 338\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-28a-87\right){x}-107a-338$
12.2-a4 12.2-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $19.19785289$ 1.517723533 \( \frac{1957662404}{6561} a + \frac{6190492076}{6561} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -798 a - 2522\) , \( 22946 a + 72562\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-798a-2522\right){x}+22946a+72562$
12.2-b1 12.2-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/4\Z$ $0.525283350$ $19.19785289$ 1.195852355 \( -\frac{37287936100}{9} a + \frac{117914819012}{9} \) \( \bigl[a\) , \( a\) , \( a\) , \( 135 a - 421\) , \( -1518 a + 4805\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(135a-421\right){x}-1518a+4805$
12.2-b2 12.2-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.262641675$ $38.39570578$ 1.195852355 \( -\frac{2053600}{81} a + \frac{6678128}{81} \) \( \bigl[a\) , \( a\) , \( a\) , \( 10 a - 26\) , \( -24 a + 80\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(10a-26\right){x}-24a+80$
12.2-b3 12.2-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z$ $0.131320837$ $19.19785289$ 1.195852355 \( \frac{77824}{9} a + \frac{262144}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 14 a - 39\) , \( -a + 5\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(14a-39\right){x}-a+5$
12.2-b4 12.2-b \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 3 \) $1$ $\Z/2\Z$ $0.131320837$ $19.19785289$ 1.195852355 \( \frac{1957662404}{6561} a + \frac{6190492076}{6561} \) \( \bigl[a\) , \( a\) , \( a\) , \( 5 a - 11\) , \( -50 a + 161\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(5a-11\right){x}-50a+161$
18.2-a1 18.2-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $38.48760139$ 1.352316467 \( -\frac{1099493}{16} a - \frac{462131}{2} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -143 a - 451\) , \( 1462 a + 4623\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-143a-451\right){x}+1462a+4623$
18.2-a2 18.2-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $4.276400154$ 1.352316467 \( -\frac{454513}{2048} a + \frac{260987}{256} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 257 a + 814\) , \( 8740 a + 27638\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(257a+814\right){x}+8740a+27638$
18.2-b1 18.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.167148684$ $4.709278832$ 0.995674444 \( -\frac{14810400553709}{62208} a - \frac{11708649294791}{15552} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( -4515 a - 14281\) , \( 288657 a + 912811\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-4515a-14281\right){x}+288657a+912811$
18.2-b2 18.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.501446054$ $1.569759610$ 0.995674444 \( \frac{49923068043119}{114791256} a - \frac{39483668375137}{28697814} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -65 a - 304\) , \( 1536 a + 4219\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-65a-304\right){x}+1536a+4219$
18.2-b3 18.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.100289210$ $7.848798054$ 0.995674444 \( -\frac{18505}{54} a + \frac{15214}{27} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -5 a - 4\) , \( -12 a - 29\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-5a-4\right){x}-12a-29$
18.2-b4 18.2-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.033429736$ $23.54639416$ 0.995674444 \( \frac{40555}{12} a - \frac{30779}{3} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( 15 a + 44\) , \( 114 a + 358\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(15a+44\right){x}+114a+358$
18.2-c1 18.2-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $4.709278832$ 2.482007874 \( -\frac{14810400553709}{62208} a - \frac{11708649294791}{15552} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -95 a + 231\) , \( 6100 a - 19186\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-95a+231\right){x}+6100a-19186$
18.2-c2 18.2-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.569759610$ 2.482007874 \( \frac{49923068043119}{114791256} a - \frac{39483668375137}{28697814} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 6220 a - 19669\) , \( 484078 a - 1530789\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(6220a-19669\right){x}+484078a-1530789$
18.2-c3 18.2-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $7.848798054$ 2.482007874 \( -\frac{18505}{54} a + \frac{15214}{27} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -65 a + 206\) , \( -203 a + 642\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-65a+206\right){x}-203a+642$
18.2-c4 18.2-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $23.54639416$ 2.482007874 \( \frac{40555}{12} a - \frac{30779}{3} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 25 a - 69\) , \( -104 a + 338\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(25a-69\right){x}-104a+338$
18.2-d1 18.2-d \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.010597633$ $38.48760139$ 1.805750669 \( -\frac{1099493}{16} a - \frac{462131}{2} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 10 a - 39\) , \( -21 a + 66\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(10a-39\right){x}-21a+66$
18.2-d2 18.2-d \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.031792900$ $4.276400154$ 1.805750669 \( -\frac{454513}{2048} a + \frac{260987}{256} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -70 a + 221\) , \( -165 a + 526\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-70a+221\right){x}-165a+526$
18.3-a1 18.3-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $38.48760139$ 1.352316467 \( \frac{1099493}{16} a - \frac{462131}{2} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -3 a - 12\) , \( a + 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-3a-12\right){x}+a+2$
18.3-a2 18.3-a \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $4.276400154$ 1.352316467 \( \frac{454513}{2048} a + \frac{260987}{256} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 17 a + 53\) , \( 29 a + 92\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(17a+53\right){x}+29a+92$
18.3-b1 18.3-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.501446054$ $1.569759610$ 0.995674444 \( -\frac{49923068043119}{114791256} a - \frac{39483668375137}{28697814} \) \( \bigl[a\) , \( a\) , \( a\) , \( -24882 a - 78689\) , \( -3847743 a - 12167634\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-24882a-78689\right){x}-3847743a-12167634$
18.3-b2 18.3-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.033429736$ $23.54639416$ 0.995674444 \( -\frac{40555}{12} a - \frac{30779}{3} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( -6 a - 15\) , \( 7 a + 20\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-6a-15\right){x}+7a+20$
18.3-b3 18.3-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.167148684$ $4.709278832$ 0.995674444 \( \frac{14810400553709}{62208} a - \frac{11708649294791}{15552} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 24 a + 60\) , \( -746 a - 2308\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(24a+60\right){x}-746a-2308$
18.3-b4 18.3-b \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.100289210$ $7.848798054$ 0.995674444 \( \frac{18505}{54} a + \frac{15214}{27} \) \( \bigl[a\) , \( a\) , \( a\) , \( 258 a + 811\) , \( 1365 a + 4314\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(258a+811\right){x}+1365a+4314$
18.3-c1 18.3-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.569759610$ 2.482007874 \( -\frac{49923068043119}{114791256} a - \frac{39483668375137}{28697814} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -6220 a - 19669\) , \( -484078 a - 1530789\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-6220a-19669\right){x}-484078a-1530789$
18.3-c2 18.3-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $23.54639416$ 2.482007874 \( -\frac{40555}{12} a - \frac{30779}{3} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -25 a - 69\) , \( 104 a + 338\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-25a-69\right){x}+104a+338$
18.3-c3 18.3-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/3\Z$ $1$ $4.709278832$ 2.482007874 \( \frac{14810400553709}{62208} a - \frac{11708649294791}{15552} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 95 a + 231\) , \( -6100 a - 19186\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(95a+231\right){x}-6100a-19186$
18.3-c4 18.3-c \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $0$ $\mathsf{trivial}$ $1$ $7.848798054$ 2.482007874 \( \frac{18505}{54} a + \frac{15214}{27} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 65 a + 206\) , \( 203 a + 642\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(65a+206\right){x}+203a+642$
18.3-d1 18.3-d \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.010597633$ $38.48760139$ 1.805750669 \( \frac{1099493}{16} a - \frac{462131}{2} \) \( \bigl[a\) , \( a\) , \( a\) , \( -10 a - 39\) , \( 21 a + 66\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-10a-39\right){x}+21a+66$
18.3-d2 18.3-d \(\Q(\sqrt{10}) \) \( 2 \cdot 3^{2} \) $1$ $\mathsf{trivial}$ $0.031792900$ $4.276400154$ 1.805750669 \( \frac{454513}{2048} a + \frac{260987}{256} \) \( \bigl[a\) , \( a\) , \( a\) , \( 70 a + 221\) , \( 165 a + 526\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(70a+221\right){x}+165a+526$
20.1-a1 20.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.772687765$ 2.522578912 \( -\frac{20720464}{15625} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -5\) , \( -25\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-5{x}-25$
20.1-a2 20.1-a \(\Q(\sqrt{10}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $15.95418988$ 2.522578912 \( \frac{21296}{25} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 5\) , \( 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+5{x}+3$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.