Properties

Label 21.3.112...376.1
Degree $21$
Signature $[3, 9]$
Discriminant $-1.124\times 10^{31}$
Root discriminant \(30.10\)
Ramified primes $2,37,193327$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times S_7$ (as 21T74)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1)
 
gp: K = bnfinit(y^21 - y^20 - 3*y^19 + 15*y^18 - 14*y^17 - 42*y^16 + 112*y^15 + 113*y^14 + 10*y^13 - 937*y^12 - 860*y^11 + 1848*y^10 + 3892*y^9 - 2944*y^8 - 2961*y^7 + 1339*y^6 - 176*y^5 - 182*y^4 + 74*y^3 - 4*y^2 - 6*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1)
 

\( x^{21} - x^{20} - 3 x^{19} + 15 x^{18} - 14 x^{17} - 42 x^{16} + 112 x^{15} + 113 x^{14} + 10 x^{13} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-11238530872385902708009257189376\) \(\medspace = -\,2^{14}\cdot 37^{7}\cdot 193327^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.10\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}37^{1/2}193327^{1/2}\approx 4245.548257194108$
Ramified primes:   \(2\), \(37\), \(193327\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-7153099}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{66\!\cdots\!75}a^{20}-\frac{58\!\cdots\!22}{13\!\cdots\!55}a^{19}-\frac{15\!\cdots\!63}{66\!\cdots\!75}a^{18}-\frac{27\!\cdots\!43}{66\!\cdots\!75}a^{17}+\frac{51\!\cdots\!97}{11\!\cdots\!25}a^{16}-\frac{14\!\cdots\!24}{66\!\cdots\!75}a^{15}+\frac{23\!\cdots\!03}{66\!\cdots\!75}a^{14}+\frac{85\!\cdots\!36}{66\!\cdots\!75}a^{13}+\frac{17\!\cdots\!36}{66\!\cdots\!75}a^{12}+\frac{78\!\cdots\!39}{66\!\cdots\!75}a^{11}+\frac{12\!\cdots\!89}{66\!\cdots\!75}a^{10}-\frac{15\!\cdots\!03}{66\!\cdots\!75}a^{9}-\frac{12\!\cdots\!31}{66\!\cdots\!75}a^{8}+\frac{31\!\cdots\!97}{13\!\cdots\!55}a^{7}-\frac{23\!\cdots\!01}{66\!\cdots\!75}a^{6}-\frac{17\!\cdots\!52}{66\!\cdots\!75}a^{5}+\frac{16\!\cdots\!92}{66\!\cdots\!75}a^{4}+\frac{63\!\cdots\!58}{13\!\cdots\!55}a^{3}-\frac{23\!\cdots\!36}{66\!\cdots\!75}a^{2}-\frac{52\!\cdots\!46}{13\!\cdots\!55}a+\frac{30\!\cdots\!39}{66\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!16}{66\!\cdots\!75}a^{20}-\frac{22\!\cdots\!32}{13\!\cdots\!55}a^{19}+\frac{18\!\cdots\!92}{66\!\cdots\!75}a^{18}+\frac{55\!\cdots\!37}{66\!\cdots\!75}a^{17}-\frac{27\!\cdots\!98}{11\!\cdots\!25}a^{16}+\frac{46\!\cdots\!91}{66\!\cdots\!75}a^{15}+\frac{53\!\cdots\!23}{66\!\cdots\!75}a^{14}-\frac{64\!\cdots\!74}{66\!\cdots\!75}a^{13}-\frac{59\!\cdots\!49}{66\!\cdots\!75}a^{12}-\frac{29\!\cdots\!26}{66\!\cdots\!75}a^{11}+\frac{50\!\cdots\!99}{66\!\cdots\!75}a^{10}+\frac{11\!\cdots\!02}{66\!\cdots\!75}a^{9}-\frac{95\!\cdots\!71}{66\!\cdots\!75}a^{8}-\frac{65\!\cdots\!98}{13\!\cdots\!55}a^{7}+\frac{10\!\cdots\!84}{66\!\cdots\!75}a^{6}-\frac{52\!\cdots\!82}{66\!\cdots\!75}a^{5}-\frac{19\!\cdots\!28}{66\!\cdots\!75}a^{4}+\frac{45\!\cdots\!73}{13\!\cdots\!55}a^{3}+\frac{20\!\cdots\!49}{66\!\cdots\!75}a^{2}-\frac{11\!\cdots\!16}{13\!\cdots\!55}a+\frac{67\!\cdots\!24}{66\!\cdots\!75}$, $\frac{26\!\cdots\!43}{66\!\cdots\!75}a^{20}-\frac{55\!\cdots\!36}{13\!\cdots\!55}a^{19}-\frac{59\!\cdots\!84}{66\!\cdots\!75}a^{18}+\frac{39\!\cdots\!76}{66\!\cdots\!75}a^{17}-\frac{76\!\cdots\!29}{11\!\cdots\!25}a^{16}-\frac{83\!\cdots\!82}{66\!\cdots\!75}a^{15}+\frac{28\!\cdots\!54}{66\!\cdots\!75}a^{14}+\frac{20\!\cdots\!98}{66\!\cdots\!75}a^{13}+\frac{21\!\cdots\!48}{66\!\cdots\!75}a^{12}-\frac{22\!\cdots\!48}{66\!\cdots\!75}a^{11}-\frac{21\!\cdots\!98}{66\!\cdots\!75}a^{10}+\frac{32\!\cdots\!96}{66\!\cdots\!75}a^{9}+\frac{80\!\cdots\!17}{66\!\cdots\!75}a^{8}-\frac{10\!\cdots\!44}{13\!\cdots\!55}a^{7}+\frac{92\!\cdots\!32}{66\!\cdots\!75}a^{6}+\frac{48\!\cdots\!14}{66\!\cdots\!75}a^{5}-\frac{73\!\cdots\!94}{66\!\cdots\!75}a^{4}+\frac{98\!\cdots\!34}{13\!\cdots\!55}a^{3}+\frac{15\!\cdots\!02}{66\!\cdots\!75}a^{2}-\frac{43\!\cdots\!48}{13\!\cdots\!55}a+\frac{66\!\cdots\!77}{66\!\cdots\!75}$, $\frac{20\!\cdots\!99}{66\!\cdots\!75}a^{20}-\frac{30\!\cdots\!08}{13\!\cdots\!55}a^{19}-\frac{65\!\cdots\!62}{66\!\cdots\!75}a^{18}+\frac{29\!\cdots\!43}{66\!\cdots\!75}a^{17}-\frac{36\!\cdots\!97}{11\!\cdots\!25}a^{16}-\frac{91\!\cdots\!51}{66\!\cdots\!75}a^{15}+\frac{20\!\cdots\!47}{66\!\cdots\!75}a^{14}+\frac{28\!\cdots\!14}{66\!\cdots\!75}a^{13}+\frac{10\!\cdots\!39}{66\!\cdots\!75}a^{12}-\frac{19\!\cdots\!64}{66\!\cdots\!75}a^{11}-\frac{23\!\cdots\!89}{66\!\cdots\!75}a^{10}+\frac{31\!\cdots\!28}{66\!\cdots\!75}a^{9}+\frac{89\!\cdots\!31}{66\!\cdots\!75}a^{8}-\frac{71\!\cdots\!82}{13\!\cdots\!55}a^{7}-\frac{69\!\cdots\!24}{66\!\cdots\!75}a^{6}+\frac{54\!\cdots\!52}{66\!\cdots\!75}a^{5}-\frac{21\!\cdots\!17}{66\!\cdots\!75}a^{4}-\frac{41\!\cdots\!53}{13\!\cdots\!55}a^{3}+\frac{17\!\cdots\!61}{66\!\cdots\!75}a^{2}-\frac{69\!\cdots\!94}{13\!\cdots\!55}a-\frac{65\!\cdots\!64}{66\!\cdots\!75}$, $\frac{31\!\cdots\!27}{66\!\cdots\!75}a^{20}-\frac{16\!\cdots\!59}{13\!\cdots\!55}a^{19}-\frac{29\!\cdots\!26}{66\!\cdots\!75}a^{18}+\frac{56\!\cdots\!14}{66\!\cdots\!75}a^{17}-\frac{20\!\cdots\!81}{11\!\cdots\!25}a^{16}-\frac{29\!\cdots\!73}{66\!\cdots\!75}a^{15}+\frac{47\!\cdots\!81}{66\!\cdots\!75}a^{14}-\frac{19\!\cdots\!53}{66\!\cdots\!75}a^{13}-\frac{24\!\cdots\!03}{66\!\cdots\!75}a^{12}-\frac{34\!\cdots\!97}{66\!\cdots\!75}a^{11}+\frac{16\!\cdots\!78}{66\!\cdots\!75}a^{10}+\frac{82\!\cdots\!44}{66\!\cdots\!75}a^{9}+\frac{58\!\cdots\!38}{66\!\cdots\!75}a^{8}-\frac{44\!\cdots\!61}{13\!\cdots\!55}a^{7}+\frac{66\!\cdots\!23}{66\!\cdots\!75}a^{6}+\frac{35\!\cdots\!46}{66\!\cdots\!75}a^{5}-\frac{13\!\cdots\!41}{66\!\cdots\!75}a^{4}+\frac{77\!\cdots\!11}{13\!\cdots\!55}a^{3}+\frac{13\!\cdots\!28}{66\!\cdots\!75}a^{2}-\frac{76\!\cdots\!82}{13\!\cdots\!55}a-\frac{20\!\cdots\!47}{66\!\cdots\!75}$, $\frac{75\!\cdots\!64}{66\!\cdots\!75}a^{20}-\frac{17\!\cdots\!33}{13\!\cdots\!55}a^{19}-\frac{13\!\cdots\!07}{66\!\cdots\!75}a^{18}+\frac{11\!\cdots\!73}{66\!\cdots\!75}a^{17}-\frac{23\!\cdots\!17}{11\!\cdots\!25}a^{16}-\frac{19\!\cdots\!86}{66\!\cdots\!75}a^{15}+\frac{78\!\cdots\!67}{66\!\cdots\!75}a^{14}+\frac{49\!\cdots\!54}{66\!\cdots\!75}a^{13}+\frac{69\!\cdots\!29}{66\!\cdots\!75}a^{12}-\frac{63\!\cdots\!54}{66\!\cdots\!75}a^{11}-\frac{44\!\cdots\!04}{66\!\cdots\!75}a^{10}+\frac{85\!\cdots\!58}{66\!\cdots\!75}a^{9}+\frac{20\!\cdots\!16}{66\!\cdots\!75}a^{8}-\frac{40\!\cdots\!82}{13\!\cdots\!55}a^{7}+\frac{44\!\cdots\!86}{66\!\cdots\!75}a^{6}+\frac{12\!\cdots\!47}{66\!\cdots\!75}a^{5}-\frac{11\!\cdots\!37}{66\!\cdots\!75}a^{4}+\frac{49\!\cdots\!12}{13\!\cdots\!55}a^{3}+\frac{39\!\cdots\!46}{66\!\cdots\!75}a^{2}-\frac{58\!\cdots\!64}{13\!\cdots\!55}a-\frac{12\!\cdots\!54}{66\!\cdots\!75}$, $\frac{54\!\cdots\!86}{66\!\cdots\!75}a^{20}+\frac{32\!\cdots\!43}{13\!\cdots\!55}a^{19}-\frac{17\!\cdots\!93}{66\!\cdots\!75}a^{18}+\frac{56\!\cdots\!77}{66\!\cdots\!75}a^{17}+\frac{16\!\cdots\!42}{11\!\cdots\!25}a^{16}-\frac{24\!\cdots\!64}{66\!\cdots\!75}a^{15}+\frac{25\!\cdots\!33}{66\!\cdots\!75}a^{14}+\frac{11\!\cdots\!96}{66\!\cdots\!75}a^{13}+\frac{14\!\cdots\!21}{66\!\cdots\!75}a^{12}-\frac{40\!\cdots\!21}{66\!\cdots\!75}a^{11}-\frac{10\!\cdots\!46}{66\!\cdots\!75}a^{10}-\frac{16\!\cdots\!33}{66\!\cdots\!75}a^{9}+\frac{26\!\cdots\!34}{66\!\cdots\!75}a^{8}+\frac{40\!\cdots\!92}{13\!\cdots\!55}a^{7}-\frac{90\!\cdots\!61}{66\!\cdots\!75}a^{6}-\frac{21\!\cdots\!47}{66\!\cdots\!75}a^{5}-\frac{14\!\cdots\!13}{66\!\cdots\!75}a^{4}-\frac{54\!\cdots\!97}{13\!\cdots\!55}a^{3}-\frac{63\!\cdots\!71}{66\!\cdots\!75}a^{2}-\frac{85\!\cdots\!71}{13\!\cdots\!55}a-\frac{74\!\cdots\!96}{66\!\cdots\!75}$, $\frac{86\!\cdots\!62}{66\!\cdots\!75}a^{20}-\frac{13\!\cdots\!54}{13\!\cdots\!55}a^{19}-\frac{27\!\cdots\!81}{66\!\cdots\!75}a^{18}+\frac{12\!\cdots\!34}{66\!\cdots\!75}a^{17}-\frac{16\!\cdots\!36}{11\!\cdots\!25}a^{16}-\frac{38\!\cdots\!13}{66\!\cdots\!75}a^{15}+\frac{88\!\cdots\!36}{66\!\cdots\!75}a^{14}+\frac{11\!\cdots\!32}{66\!\cdots\!75}a^{13}+\frac{35\!\cdots\!32}{66\!\cdots\!75}a^{12}-\frac{80\!\cdots\!07}{66\!\cdots\!75}a^{11}-\frac{91\!\cdots\!57}{66\!\cdots\!75}a^{10}+\frac{13\!\cdots\!89}{66\!\cdots\!75}a^{9}+\frac{36\!\cdots\!28}{66\!\cdots\!75}a^{8}-\frac{34\!\cdots\!71}{13\!\cdots\!55}a^{7}-\frac{28\!\cdots\!87}{66\!\cdots\!75}a^{6}+\frac{44\!\cdots\!01}{66\!\cdots\!75}a^{5}-\frac{10\!\cdots\!96}{66\!\cdots\!75}a^{4}-\frac{20\!\cdots\!59}{13\!\cdots\!55}a^{3}+\frac{35\!\cdots\!18}{66\!\cdots\!75}a^{2}+\frac{98\!\cdots\!93}{13\!\cdots\!55}a-\frac{12\!\cdots\!07}{66\!\cdots\!75}$, $\frac{18\!\cdots\!89}{66\!\cdots\!75}a^{20}+\frac{31\!\cdots\!32}{13\!\cdots\!55}a^{19}-\frac{15\!\cdots\!07}{66\!\cdots\!75}a^{18}-\frac{32\!\cdots\!27}{66\!\cdots\!75}a^{17}+\frac{36\!\cdots\!33}{11\!\cdots\!25}a^{16}-\frac{21\!\cdots\!61}{66\!\cdots\!75}a^{15}-\frac{63\!\cdots\!83}{66\!\cdots\!75}a^{14}+\frac{18\!\cdots\!04}{66\!\cdots\!75}a^{13}+\frac{28\!\cdots\!04}{66\!\cdots\!75}a^{12}-\frac{63\!\cdots\!04}{66\!\cdots\!75}a^{11}-\frac{18\!\cdots\!79}{66\!\cdots\!75}a^{10}-\frac{18\!\cdots\!92}{66\!\cdots\!75}a^{9}+\frac{33\!\cdots\!91}{66\!\cdots\!75}a^{8}+\frac{15\!\cdots\!18}{13\!\cdots\!55}a^{7}-\frac{27\!\cdots\!89}{66\!\cdots\!75}a^{6}-\frac{71\!\cdots\!53}{66\!\cdots\!75}a^{5}-\frac{24\!\cdots\!37}{66\!\cdots\!75}a^{4}+\frac{13\!\cdots\!97}{13\!\cdots\!55}a^{3}-\frac{63\!\cdots\!29}{66\!\cdots\!75}a^{2}-\frac{10\!\cdots\!69}{13\!\cdots\!55}a-\frac{24\!\cdots\!04}{66\!\cdots\!75}$, $\frac{39\!\cdots\!26}{66\!\cdots\!75}a^{20}-\frac{57\!\cdots\!32}{13\!\cdots\!55}a^{19}-\frac{12\!\cdots\!13}{66\!\cdots\!75}a^{18}+\frac{55\!\cdots\!32}{66\!\cdots\!75}a^{17}-\frac{66\!\cdots\!28}{11\!\cdots\!25}a^{16}-\frac{17\!\cdots\!74}{66\!\cdots\!75}a^{15}+\frac{39\!\cdots\!78}{66\!\cdots\!75}a^{14}+\frac{55\!\cdots\!86}{66\!\cdots\!75}a^{13}+\frac{17\!\cdots\!86}{66\!\cdots\!75}a^{12}-\frac{36\!\cdots\!61}{66\!\cdots\!75}a^{11}-\frac{43\!\cdots\!86}{66\!\cdots\!75}a^{10}+\frac{62\!\cdots\!47}{66\!\cdots\!75}a^{9}+\frac{17\!\cdots\!44}{66\!\cdots\!75}a^{8}-\frac{14\!\cdots\!88}{13\!\cdots\!55}a^{7}-\frac{14\!\cdots\!76}{66\!\cdots\!75}a^{6}+\frac{15\!\cdots\!23}{66\!\cdots\!75}a^{5}+\frac{43\!\cdots\!92}{66\!\cdots\!75}a^{4}-\frac{11\!\cdots\!22}{13\!\cdots\!55}a^{3}+\frac{17\!\cdots\!39}{66\!\cdots\!75}a^{2}+\frac{13\!\cdots\!14}{13\!\cdots\!55}a-\frac{10\!\cdots\!11}{66\!\cdots\!75}$, $\frac{18\!\cdots\!23}{66\!\cdots\!75}a^{20}-\frac{28\!\cdots\!06}{13\!\cdots\!55}a^{19}-\frac{57\!\cdots\!49}{66\!\cdots\!75}a^{18}+\frac{25\!\cdots\!61}{66\!\cdots\!75}a^{17}-\frac{33\!\cdots\!19}{11\!\cdots\!25}a^{16}-\frac{79\!\cdots\!02}{66\!\cdots\!75}a^{15}+\frac{18\!\cdots\!69}{66\!\cdots\!75}a^{14}+\frac{24\!\cdots\!53}{66\!\cdots\!75}a^{13}+\frac{67\!\cdots\!03}{66\!\cdots\!75}a^{12}-\frac{16\!\cdots\!78}{66\!\cdots\!75}a^{11}-\frac{18\!\cdots\!28}{66\!\cdots\!75}a^{10}+\frac{29\!\cdots\!06}{66\!\cdots\!75}a^{9}+\frac{76\!\cdots\!12}{66\!\cdots\!75}a^{8}-\frac{75\!\cdots\!39}{13\!\cdots\!55}a^{7}-\frac{60\!\cdots\!48}{66\!\cdots\!75}a^{6}+\frac{11\!\cdots\!29}{66\!\cdots\!75}a^{5}-\frac{88\!\cdots\!34}{66\!\cdots\!75}a^{4}-\frac{68\!\cdots\!56}{13\!\cdots\!55}a^{3}+\frac{64\!\cdots\!22}{66\!\cdots\!75}a^{2}+\frac{12\!\cdots\!17}{13\!\cdots\!55}a-\frac{92\!\cdots\!78}{66\!\cdots\!75}$, $\frac{70\!\cdots\!73}{66\!\cdots\!75}a^{20}-\frac{18\!\cdots\!36}{13\!\cdots\!55}a^{19}-\frac{18\!\cdots\!24}{66\!\cdots\!75}a^{18}+\frac{11\!\cdots\!61}{66\!\cdots\!75}a^{17}-\frac{23\!\cdots\!19}{11\!\cdots\!25}a^{16}-\frac{25\!\cdots\!52}{66\!\cdots\!75}a^{15}+\frac{88\!\cdots\!19}{66\!\cdots\!75}a^{14}+\frac{51\!\cdots\!03}{66\!\cdots\!75}a^{13}-\frac{14\!\cdots\!47}{66\!\cdots\!75}a^{12}-\frac{66\!\cdots\!03}{66\!\cdots\!75}a^{11}-\frac{38\!\cdots\!28}{66\!\cdots\!75}a^{10}+\frac{14\!\cdots\!31}{66\!\cdots\!75}a^{9}+\frac{22\!\cdots\!87}{66\!\cdots\!75}a^{8}-\frac{58\!\cdots\!54}{13\!\cdots\!55}a^{7}-\frac{12\!\cdots\!73}{66\!\cdots\!75}a^{6}+\frac{13\!\cdots\!04}{66\!\cdots\!75}a^{5}-\frac{46\!\cdots\!09}{66\!\cdots\!75}a^{4}+\frac{12\!\cdots\!74}{13\!\cdots\!55}a^{3}+\frac{36\!\cdots\!72}{66\!\cdots\!75}a^{2}-\frac{20\!\cdots\!83}{13\!\cdots\!55}a+\frac{63\!\cdots\!72}{66\!\cdots\!75}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13187708.2201 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 13187708.2201 \cdot 1}{2\cdot\sqrt{11238530872385902708009257189376}}\cr\approx \mathstrut & 0.240155957651 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 3*x^19 + 15*x^18 - 14*x^17 - 42*x^16 + 112*x^15 + 113*x^14 + 10*x^13 - 937*x^12 - 860*x^11 + 1848*x^10 + 3892*x^9 - 2944*x^8 - 2961*x^7 + 1339*x^6 - 176*x^5 - 182*x^4 + 74*x^3 - 4*x^2 - 6*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times S_7$ (as 21T74):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 30240
The 45 conjugacy class representatives for $S_3\times S_7$
Character table for $S_3\times S_7$

Intermediate fields

3.3.148.1, 7.1.193327.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{3}$ ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ $15{,}\,{\href{/padicField/7.6.0.1}{6} }$ $21$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ R ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ $21$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.21.14.1$x^{21} + 14 x^{18} + 87 x^{15} + 3 x^{14} - 14 x^{12} - 462 x^{11} + 1655 x^{9} + 4290 x^{8} + 3 x^{7} + 2982 x^{6} - 6090 x^{5} + 210 x^{4} - 1651 x^{3} + 1263 x^{2} + 87 x + 251$$3$$7$$14$21T6$[\ ]_{3}^{14}$
\(37\) Copy content Toggle raw display 37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.5.0.1$x^{5} + 10 x + 35$$1$$5$$0$$C_5$$[\ ]^{5}$
37.10.5.1$x^{10} + 4625 x^{9} + 8556435 x^{8} + 7915215750 x^{7} + 3661420460585 x^{6} + 677772793435945 x^{5} + 135472642761580 x^{4} + 10915368272100 x^{3} + 37311922841505 x^{2} + 6899973656637600 x + 23967251414048817$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(193327\) Copy content Toggle raw display $\Q_{193327}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$