Properties

Label 17.17.220...001.1
Degree $17$
Signature $[17, 0]$
Discriminant $2.200\times 10^{42}$
Root discriminant \(309.55\)
Ramified prime $443$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103)
 
gp: K = bnfinit(y^17 - y^16 - 208*y^15 - 17*y^14 + 15287*y^13 + 13881*y^12 - 487578*y^11 - 703261*y^10 + 6754359*y^9 + 10540902*y^8 - 41136753*y^7 - 57683825*y^6 + 92010954*y^5 + 95287840*y^4 - 17501435*y^3 - 25026156*y^2 - 563260*y + 1246103, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103)
 

\( x^{17} - x^{16} - 208 x^{15} - 17 x^{14} + 15287 x^{13} + 13881 x^{12} - 487578 x^{11} - 703261 x^{10} + \cdots + 1246103 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[17, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2200187128095499475530336818113367454680001\) \(\medspace = 443^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(309.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $443^{16/17}\approx 309.5515042584762$
Ramified primes:   \(443\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $17$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(443\)
Dirichlet character group:    $\lbrace$$\chi_{443}(1,·)$, $\chi_{443}(67,·)$, $\chi_{443}(324,·)$, $\chi_{443}(267,·)$, $\chi_{443}(13,·)$, $\chi_{443}(270,·)$, $\chi_{443}(209,·)$, $\chi_{443}(409,·)$, $\chi_{443}(225,·)$, $\chi_{443}(123,·)$, $\chi_{443}(425,·)$, $\chi_{443}(428,·)$, $\chi_{443}(370,·)$, $\chi_{443}(169,·)$, $\chi_{443}(248,·)$, $\chi_{443}(59,·)$, $\chi_{443}(380,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{40\!\cdots\!61}a^{16}+\frac{30\!\cdots\!51}{40\!\cdots\!61}a^{15}-\frac{23\!\cdots\!23}{40\!\cdots\!61}a^{14}-\frac{15\!\cdots\!62}{40\!\cdots\!61}a^{13}+\frac{55\!\cdots\!16}{40\!\cdots\!61}a^{12}+\frac{75\!\cdots\!35}{40\!\cdots\!61}a^{11}+\frac{44\!\cdots\!44}{40\!\cdots\!61}a^{10}+\frac{13\!\cdots\!35}{40\!\cdots\!61}a^{9}-\frac{25\!\cdots\!89}{40\!\cdots\!61}a^{8}-\frac{14\!\cdots\!79}{40\!\cdots\!61}a^{7}-\frac{26\!\cdots\!97}{40\!\cdots\!61}a^{6}-\frac{18\!\cdots\!13}{40\!\cdots\!61}a^{5}+\frac{78\!\cdots\!20}{40\!\cdots\!61}a^{4}-\frac{42\!\cdots\!25}{40\!\cdots\!61}a^{3}+\frac{15\!\cdots\!39}{40\!\cdots\!61}a^{2}+\frac{11\!\cdots\!06}{40\!\cdots\!61}a-\frac{12\!\cdots\!69}{40\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!17}{40\!\cdots\!61}a^{16}-\frac{15\!\cdots\!95}{40\!\cdots\!61}a^{15}-\frac{21\!\cdots\!57}{40\!\cdots\!61}a^{14}+\frac{84\!\cdots\!67}{40\!\cdots\!61}a^{13}+\frac{15\!\cdots\!21}{40\!\cdots\!61}a^{12}+\frac{69\!\cdots\!72}{40\!\cdots\!61}a^{11}-\frac{51\!\cdots\!17}{40\!\cdots\!61}a^{10}-\frac{49\!\cdots\!99}{40\!\cdots\!61}a^{9}+\frac{72\!\cdots\!26}{40\!\cdots\!61}a^{8}+\frac{75\!\cdots\!44}{40\!\cdots\!61}a^{7}-\frac{46\!\cdots\!63}{40\!\cdots\!61}a^{6}-\frac{38\!\cdots\!50}{40\!\cdots\!61}a^{5}+\frac{11\!\cdots\!05}{40\!\cdots\!61}a^{4}+\frac{45\!\cdots\!69}{40\!\cdots\!61}a^{3}-\frac{34\!\cdots\!35}{40\!\cdots\!61}a^{2}-\frac{83\!\cdots\!34}{40\!\cdots\!61}a+\frac{22\!\cdots\!21}{40\!\cdots\!61}$, $\frac{40\!\cdots\!28}{40\!\cdots\!61}a^{16}-\frac{54\!\cdots\!57}{40\!\cdots\!61}a^{15}-\frac{83\!\cdots\!64}{40\!\cdots\!61}a^{14}+\frac{22\!\cdots\!56}{40\!\cdots\!61}a^{13}+\frac{61\!\cdots\!53}{40\!\cdots\!61}a^{12}+\frac{34\!\cdots\!19}{40\!\cdots\!61}a^{11}-\frac{19\!\cdots\!06}{40\!\cdots\!61}a^{10}-\frac{21\!\cdots\!71}{40\!\cdots\!61}a^{9}+\frac{28\!\cdots\!07}{40\!\cdots\!61}a^{8}+\frac{32\!\cdots\!08}{40\!\cdots\!61}a^{7}-\frac{17\!\cdots\!96}{40\!\cdots\!61}a^{6}-\frac{17\!\cdots\!09}{40\!\cdots\!61}a^{5}+\frac{43\!\cdots\!30}{40\!\cdots\!61}a^{4}+\frac{23\!\cdots\!01}{40\!\cdots\!61}a^{3}-\frac{15\!\cdots\!60}{40\!\cdots\!61}a^{2}-\frac{47\!\cdots\!67}{40\!\cdots\!61}a+\frac{14\!\cdots\!90}{40\!\cdots\!61}$, $\frac{94\!\cdots\!94}{40\!\cdots\!61}a^{16}-\frac{10\!\cdots\!91}{40\!\cdots\!61}a^{15}-\frac{19\!\cdots\!00}{40\!\cdots\!61}a^{14}+\frac{43\!\cdots\!87}{40\!\cdots\!61}a^{13}+\frac{14\!\cdots\!79}{40\!\cdots\!61}a^{12}+\frac{12\!\cdots\!35}{40\!\cdots\!61}a^{11}-\frac{46\!\cdots\!14}{40\!\cdots\!61}a^{10}-\frac{63\!\cdots\!27}{40\!\cdots\!61}a^{9}+\frac{64\!\cdots\!01}{40\!\cdots\!61}a^{8}+\frac{98\!\cdots\!74}{40\!\cdots\!61}a^{7}-\frac{39\!\cdots\!31}{40\!\cdots\!61}a^{6}-\frac{55\!\cdots\!19}{40\!\cdots\!61}a^{5}+\frac{86\!\cdots\!51}{40\!\cdots\!61}a^{4}+\frac{93\!\cdots\!63}{40\!\cdots\!61}a^{3}-\frac{53\!\cdots\!85}{40\!\cdots\!61}a^{2}-\frac{21\!\cdots\!81}{40\!\cdots\!61}a-\frac{43\!\cdots\!80}{40\!\cdots\!61}$, $\frac{18\!\cdots\!88}{40\!\cdots\!61}a^{16}+\frac{25\!\cdots\!63}{40\!\cdots\!61}a^{15}-\frac{39\!\cdots\!92}{40\!\cdots\!61}a^{14}-\frac{95\!\cdots\!41}{40\!\cdots\!61}a^{13}+\frac{28\!\cdots\!73}{40\!\cdots\!61}a^{12}+\frac{93\!\cdots\!80}{40\!\cdots\!61}a^{11}-\frac{85\!\cdots\!30}{40\!\cdots\!61}a^{10}-\frac{34\!\cdots\!22}{40\!\cdots\!61}a^{9}+\frac{95\!\cdots\!00}{40\!\cdots\!61}a^{8}+\frac{48\!\cdots\!96}{40\!\cdots\!61}a^{7}-\frac{30\!\cdots\!10}{40\!\cdots\!61}a^{6}-\frac{28\!\cdots\!61}{40\!\cdots\!61}a^{5}-\frac{80\!\cdots\!12}{40\!\cdots\!61}a^{4}+\frac{53\!\cdots\!35}{40\!\cdots\!61}a^{3}+\frac{35\!\cdots\!40}{40\!\cdots\!61}a^{2}-\frac{18\!\cdots\!84}{40\!\cdots\!61}a-\frac{27\!\cdots\!81}{40\!\cdots\!61}$, $\frac{34\!\cdots\!95}{40\!\cdots\!61}a^{16}-\frac{35\!\cdots\!08}{40\!\cdots\!61}a^{15}-\frac{71\!\cdots\!99}{40\!\cdots\!61}a^{14}-\frac{31\!\cdots\!31}{40\!\cdots\!61}a^{13}+\frac{52\!\cdots\!76}{40\!\cdots\!61}a^{12}+\frac{45\!\cdots\!10}{40\!\cdots\!61}a^{11}-\frac{16\!\cdots\!45}{40\!\cdots\!61}a^{10}-\frac{23\!\cdots\!86}{40\!\cdots\!61}a^{9}+\frac{23\!\cdots\!28}{40\!\cdots\!61}a^{8}+\frac{35\!\cdots\!88}{40\!\cdots\!61}a^{7}-\frac{14\!\cdots\!55}{40\!\cdots\!61}a^{6}-\frac{18\!\cdots\!88}{40\!\cdots\!61}a^{5}+\frac{30\!\cdots\!41}{40\!\cdots\!61}a^{4}+\frac{29\!\cdots\!14}{40\!\cdots\!61}a^{3}-\frac{42\!\cdots\!19}{40\!\cdots\!61}a^{2}-\frac{50\!\cdots\!08}{40\!\cdots\!61}a-\frac{45\!\cdots\!81}{40\!\cdots\!61}$, $\frac{12\!\cdots\!47}{40\!\cdots\!61}a^{16}-\frac{20\!\cdots\!17}{40\!\cdots\!61}a^{15}-\frac{26\!\cdots\!62}{40\!\cdots\!61}a^{14}+\frac{13\!\cdots\!65}{40\!\cdots\!61}a^{13}+\frac{19\!\cdots\!45}{40\!\cdots\!61}a^{12}+\frac{64\!\cdots\!06}{40\!\cdots\!61}a^{11}-\frac{64\!\cdots\!11}{40\!\cdots\!61}a^{10}-\frac{53\!\cdots\!12}{40\!\cdots\!61}a^{9}+\frac{92\!\cdots\!92}{40\!\cdots\!61}a^{8}+\frac{81\!\cdots\!84}{40\!\cdots\!61}a^{7}-\frac{60\!\cdots\!01}{40\!\cdots\!61}a^{6}-\frac{38\!\cdots\!04}{40\!\cdots\!61}a^{5}+\frac{15\!\cdots\!32}{40\!\cdots\!61}a^{4}+\frac{24\!\cdots\!20}{40\!\cdots\!61}a^{3}-\frac{40\!\cdots\!85}{40\!\cdots\!61}a^{2}-\frac{42\!\cdots\!39}{40\!\cdots\!61}a+\frac{22\!\cdots\!38}{40\!\cdots\!61}$, $\frac{61\!\cdots\!70}{40\!\cdots\!61}a^{16}-\frac{91\!\cdots\!97}{40\!\cdots\!61}a^{15}-\frac{12\!\cdots\!26}{40\!\cdots\!61}a^{14}+\frac{51\!\cdots\!79}{40\!\cdots\!61}a^{13}+\frac{94\!\cdots\!38}{40\!\cdots\!61}a^{12}+\frac{39\!\cdots\!79}{40\!\cdots\!61}a^{11}-\frac{30\!\cdots\!24}{40\!\cdots\!61}a^{10}-\frac{28\!\cdots\!57}{40\!\cdots\!61}a^{9}+\frac{43\!\cdots\!41}{40\!\cdots\!61}a^{8}+\frac{44\!\cdots\!11}{40\!\cdots\!61}a^{7}-\frac{27\!\cdots\!24}{40\!\cdots\!61}a^{6}-\frac{22\!\cdots\!64}{40\!\cdots\!61}a^{5}+\frac{67\!\cdots\!38}{40\!\cdots\!61}a^{4}+\frac{26\!\cdots\!63}{40\!\cdots\!61}a^{3}-\frac{23\!\cdots\!21}{40\!\cdots\!61}a^{2}-\frac{57\!\cdots\!56}{40\!\cdots\!61}a+\frac{19\!\cdots\!47}{40\!\cdots\!61}$, $\frac{79\!\cdots\!99}{40\!\cdots\!61}a^{16}-\frac{71\!\cdots\!69}{40\!\cdots\!61}a^{15}-\frac{14\!\cdots\!54}{40\!\cdots\!61}a^{14}+\frac{12\!\cdots\!49}{40\!\cdots\!61}a^{13}+\frac{95\!\cdots\!42}{40\!\cdots\!61}a^{12}-\frac{76\!\cdots\!66}{40\!\cdots\!61}a^{11}-\frac{29\!\cdots\!00}{40\!\cdots\!61}a^{10}+\frac{20\!\cdots\!95}{40\!\cdots\!61}a^{9}+\frac{45\!\cdots\!53}{40\!\cdots\!61}a^{8}-\frac{26\!\cdots\!10}{40\!\cdots\!61}a^{7}-\frac{35\!\cdots\!78}{40\!\cdots\!61}a^{6}+\frac{13\!\cdots\!11}{40\!\cdots\!61}a^{5}+\frac{13\!\cdots\!69}{40\!\cdots\!61}a^{4}-\frac{24\!\cdots\!37}{40\!\cdots\!61}a^{3}-\frac{19\!\cdots\!67}{40\!\cdots\!61}a^{2}-\frac{20\!\cdots\!62}{40\!\cdots\!61}a+\frac{11\!\cdots\!91}{40\!\cdots\!61}$, $\frac{58\!\cdots\!53}{40\!\cdots\!61}a^{16}-\frac{86\!\cdots\!04}{40\!\cdots\!61}a^{15}-\frac{12\!\cdots\!82}{40\!\cdots\!61}a^{14}+\frac{48\!\cdots\!24}{40\!\cdots\!61}a^{13}+\frac{89\!\cdots\!13}{40\!\cdots\!61}a^{12}+\frac{38\!\cdots\!21}{40\!\cdots\!61}a^{11}-\frac{28\!\cdots\!74}{40\!\cdots\!61}a^{10}-\frac{27\!\cdots\!25}{40\!\cdots\!61}a^{9}+\frac{40\!\cdots\!43}{40\!\cdots\!61}a^{8}+\frac{41\!\cdots\!95}{40\!\cdots\!61}a^{7}-\frac{25\!\cdots\!88}{40\!\cdots\!61}a^{6}-\frac{21\!\cdots\!67}{40\!\cdots\!61}a^{5}+\frac{63\!\cdots\!79}{40\!\cdots\!61}a^{4}+\frac{24\!\cdots\!16}{40\!\cdots\!61}a^{3}-\frac{21\!\cdots\!77}{40\!\cdots\!61}a^{2}-\frac{38\!\cdots\!03}{40\!\cdots\!61}a+\frac{12\!\cdots\!50}{40\!\cdots\!61}$, $\frac{15\!\cdots\!55}{40\!\cdots\!61}a^{16}-\frac{26\!\cdots\!30}{40\!\cdots\!61}a^{15}-\frac{31\!\cdots\!47}{40\!\cdots\!61}a^{14}+\frac{20\!\cdots\!30}{40\!\cdots\!61}a^{13}+\frac{23\!\cdots\!58}{40\!\cdots\!61}a^{12}+\frac{43\!\cdots\!65}{40\!\cdots\!61}a^{11}-\frac{75\!\cdots\!39}{40\!\cdots\!61}a^{10}-\frac{53\!\cdots\!95}{40\!\cdots\!61}a^{9}+\frac{10\!\cdots\!18}{40\!\cdots\!61}a^{8}+\frac{84\!\cdots\!53}{40\!\cdots\!61}a^{7}-\frac{73\!\cdots\!59}{40\!\cdots\!61}a^{6}-\frac{40\!\cdots\!88}{40\!\cdots\!61}a^{5}+\frac{19\!\cdots\!10}{40\!\cdots\!61}a^{4}+\frac{41\!\cdots\!03}{40\!\cdots\!61}a^{3}-\frac{11\!\cdots\!47}{40\!\cdots\!61}a^{2}-\frac{25\!\cdots\!69}{40\!\cdots\!61}a+\frac{96\!\cdots\!63}{40\!\cdots\!61}$, $\frac{26\!\cdots\!65}{40\!\cdots\!61}a^{16}-\frac{41\!\cdots\!37}{40\!\cdots\!61}a^{15}-\frac{55\!\cdots\!08}{40\!\cdots\!61}a^{14}+\frac{25\!\cdots\!35}{40\!\cdots\!61}a^{13}+\frac{40\!\cdots\!33}{40\!\cdots\!61}a^{12}+\frac{15\!\cdots\!14}{40\!\cdots\!61}a^{11}-\frac{13\!\cdots\!10}{40\!\cdots\!61}a^{10}-\frac{11\!\cdots\!90}{40\!\cdots\!61}a^{9}+\frac{18\!\cdots\!36}{40\!\cdots\!61}a^{8}+\frac{18\!\cdots\!74}{40\!\cdots\!61}a^{7}-\frac{12\!\cdots\!95}{40\!\cdots\!61}a^{6}-\frac{91\!\cdots\!11}{40\!\cdots\!61}a^{5}+\frac{29\!\cdots\!59}{40\!\cdots\!61}a^{4}+\frac{10\!\cdots\!24}{40\!\cdots\!61}a^{3}-\frac{10\!\cdots\!96}{40\!\cdots\!61}a^{2}-\frac{15\!\cdots\!08}{40\!\cdots\!61}a+\frac{68\!\cdots\!29}{40\!\cdots\!61}$, $\frac{35\!\cdots\!11}{40\!\cdots\!61}a^{16}-\frac{47\!\cdots\!04}{40\!\cdots\!61}a^{15}-\frac{72\!\cdots\!97}{40\!\cdots\!61}a^{14}+\frac{19\!\cdots\!81}{40\!\cdots\!61}a^{13}+\frac{53\!\cdots\!40}{40\!\cdots\!61}a^{12}+\frac{29\!\cdots\!79}{40\!\cdots\!61}a^{11}-\frac{17\!\cdots\!20}{40\!\cdots\!61}a^{10}-\frac{18\!\cdots\!99}{40\!\cdots\!61}a^{9}+\frac{24\!\cdots\!23}{40\!\cdots\!61}a^{8}+\frac{28\!\cdots\!93}{40\!\cdots\!61}a^{7}-\frac{15\!\cdots\!96}{40\!\cdots\!61}a^{6}-\frac{14\!\cdots\!67}{40\!\cdots\!61}a^{5}+\frac{37\!\cdots\!73}{40\!\cdots\!61}a^{4}+\frac{19\!\cdots\!28}{40\!\cdots\!61}a^{3}-\frac{13\!\cdots\!75}{40\!\cdots\!61}a^{2}-\frac{40\!\cdots\!36}{40\!\cdots\!61}a+\frac{12\!\cdots\!32}{40\!\cdots\!61}$, $\frac{37\!\cdots\!52}{40\!\cdots\!61}a^{16}-\frac{54\!\cdots\!19}{40\!\cdots\!61}a^{15}-\frac{77\!\cdots\!48}{40\!\cdots\!61}a^{14}+\frac{29\!\cdots\!51}{40\!\cdots\!61}a^{13}+\frac{56\!\cdots\!73}{40\!\cdots\!61}a^{12}+\frac{25\!\cdots\!82}{40\!\cdots\!61}a^{11}-\frac{18\!\cdots\!13}{40\!\cdots\!61}a^{10}-\frac{17\!\cdots\!65}{40\!\cdots\!61}a^{9}+\frac{25\!\cdots\!51}{40\!\cdots\!61}a^{8}+\frac{27\!\cdots\!80}{40\!\cdots\!61}a^{7}-\frac{16\!\cdots\!11}{40\!\cdots\!61}a^{6}-\frac{13\!\cdots\!34}{40\!\cdots\!61}a^{5}+\frac{40\!\cdots\!86}{40\!\cdots\!61}a^{4}+\frac{16\!\cdots\!50}{40\!\cdots\!61}a^{3}-\frac{14\!\cdots\!68}{40\!\cdots\!61}a^{2}-\frac{22\!\cdots\!89}{40\!\cdots\!61}a+\frac{95\!\cdots\!39}{40\!\cdots\!61}$, $\frac{18\!\cdots\!45}{40\!\cdots\!61}a^{16}-\frac{21\!\cdots\!75}{40\!\cdots\!61}a^{15}-\frac{38\!\cdots\!68}{40\!\cdots\!61}a^{14}+\frac{27\!\cdots\!57}{40\!\cdots\!61}a^{13}+\frac{28\!\cdots\!23}{40\!\cdots\!61}a^{12}+\frac{21\!\cdots\!79}{40\!\cdots\!61}a^{11}-\frac{90\!\cdots\!81}{40\!\cdots\!61}a^{10}-\frac{11\!\cdots\!01}{40\!\cdots\!61}a^{9}+\frac{12\!\cdots\!97}{40\!\cdots\!61}a^{8}+\frac{17\!\cdots\!56}{40\!\cdots\!61}a^{7}-\frac{77\!\cdots\!94}{40\!\cdots\!61}a^{6}-\frac{91\!\cdots\!40}{40\!\cdots\!61}a^{5}+\frac{17\!\cdots\!78}{40\!\cdots\!61}a^{4}+\frac{13\!\cdots\!24}{40\!\cdots\!61}a^{3}-\frac{15\!\cdots\!78}{40\!\cdots\!61}a^{2}-\frac{26\!\cdots\!39}{40\!\cdots\!61}a-\frac{51\!\cdots\!71}{40\!\cdots\!61}$, $\frac{73\!\cdots\!17}{40\!\cdots\!61}a^{16}-\frac{11\!\cdots\!16}{40\!\cdots\!61}a^{15}-\frac{15\!\cdots\!65}{40\!\cdots\!61}a^{14}+\frac{65\!\cdots\!42}{40\!\cdots\!61}a^{13}+\frac{11\!\cdots\!47}{40\!\cdots\!61}a^{12}+\frac{45\!\cdots\!58}{40\!\cdots\!61}a^{11}-\frac{36\!\cdots\!85}{40\!\cdots\!61}a^{10}-\frac{33\!\cdots\!66}{40\!\cdots\!61}a^{9}+\frac{51\!\cdots\!38}{40\!\cdots\!61}a^{8}+\frac{51\!\cdots\!63}{40\!\cdots\!61}a^{7}-\frac{33\!\cdots\!31}{40\!\cdots\!61}a^{6}-\frac{26\!\cdots\!19}{40\!\cdots\!61}a^{5}+\frac{82\!\cdots\!75}{40\!\cdots\!61}a^{4}+\frac{30\!\cdots\!34}{40\!\cdots\!61}a^{3}-\frac{31\!\cdots\!73}{40\!\cdots\!61}a^{2}-\frac{63\!\cdots\!57}{40\!\cdots\!61}a+\frac{24\!\cdots\!67}{40\!\cdots\!61}$, $\frac{11\!\cdots\!31}{40\!\cdots\!61}a^{16}-\frac{96\!\cdots\!16}{40\!\cdots\!61}a^{15}-\frac{24\!\cdots\!18}{40\!\cdots\!61}a^{14}-\frac{60\!\cdots\!33}{40\!\cdots\!61}a^{13}+\frac{17\!\cdots\!37}{40\!\cdots\!61}a^{12}+\frac{19\!\cdots\!37}{40\!\cdots\!61}a^{11}-\frac{56\!\cdots\!86}{40\!\cdots\!61}a^{10}-\frac{90\!\cdots\!02}{40\!\cdots\!61}a^{9}+\frac{76\!\cdots\!00}{40\!\cdots\!61}a^{8}+\frac{13\!\cdots\!16}{40\!\cdots\!61}a^{7}-\frac{45\!\cdots\!21}{40\!\cdots\!61}a^{6}-\frac{74\!\cdots\!67}{40\!\cdots\!61}a^{5}+\frac{93\!\cdots\!24}{40\!\cdots\!61}a^{4}+\frac{12\!\cdots\!43}{40\!\cdots\!61}a^{3}+\frac{33\!\cdots\!26}{40\!\cdots\!61}a^{2}-\frac{25\!\cdots\!92}{40\!\cdots\!61}a-\frac{56\!\cdots\!75}{40\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2360552434044002.5 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{17}\cdot(2\pi)^{0}\cdot 2360552434044002.5 \cdot 1}{2\cdot\sqrt{2200187128095499475530336818113367454680001}}\cr\approx \mathstrut & 0.104295068223382 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x^16 - 208*x^15 - 17*x^14 + 15287*x^13 + 13881*x^12 - 487578*x^11 - 703261*x^10 + 6754359*x^9 + 10540902*x^8 - 41136753*x^7 - 57683825*x^6 + 92010954*x^5 + 95287840*x^4 - 17501435*x^3 - 25026156*x^2 - 563260*x + 1246103);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{17}$ (as 17T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 17
The 17 conjugacy class representatives for $C_{17}$
Character table for $C_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(443\) Copy content Toggle raw display Deg $17$$17$$1$$16$