Learn more about

Refine search

Results (displaying matches 1-50 of 2039) Next

Label \(A\) \(\chi\) \(\operatorname{ord}(\chi)\) Dim. Decomp. AL-dims.
8001.2.a \(63.8883066572\) \( \chi_{ 8001 }(1, \cdot) \) \(1\) \(314\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(7\)+\(11\)+\(12\)+\(13\)+\(14\)+\(15\)+\(16\)+\(16\)+\(16\)+\(18\)+\(19\)+\(20\)+\(22\)+\(28\)+\(32\)+\(40\) \(32\)+\(30\)+\(40\)+\(22\)+\(47\)+\(48\)+\(43\)+\(52\)
8002.2.a \(63.8962916974\) \( \chi_{ 8002 }(1, \cdot) \) \(1\) \(333\) \(1\)+\(1\)+\(1\)+\(69\)+\(77\)+\(89\)+\(95\) \(89\)+\(77\)+\(95\)+\(72\)
8003.2.a \(63.9042767376\) \( \chi_{ 8003 }(1, \cdot) \) \(1\) \(651\) \(147\)+\(153\)+\(172\)+\(179\) \(153\)+\(172\)+\(179\)+\(147\)
8004.2.a \(63.9122617778\) \( \chi_{ 8004 }(1, \cdot) \) \(1\) \(104\) \(1\)+\(1\)+\(1\)+\(8\)+\(9\)+\(9\)+\(12\)+\(13\)+\(16\)+\(16\)+\(18\) \(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(0\)+\(14\)+\(10\)+\(12\)+\(16\)+\(10\)+\(18\)+\(16\)+\(8\)
8005.2.a \(63.920246818\) \( \chi_{ 8005 }(1, \cdot) \) \(1\) \(533\) \(1\)+\(1\)+\(2\)+\(2\)+\(126\)+\(127\)+\(137\)+\(137\) \(127\)+\(139\)+\(139\)+\(128\)
8006.2.a \(63.9282318582\) \( \chi_{ 8006 }(1, \cdot) \) \(1\) \(334\) \(69\)+\(75\)+\(92\)+\(98\) \(75\)+\(92\)+\(98\)+\(69\)
8007.2.a \(63.9362168984\) \( \chi_{ 8007 }(1, \cdot) \) \(1\) \(415\) \(1\)+\(2\)+\(39\)+\(40\)+\(46\)+\(48\)+\(56\)+\(56\)+\(63\)+\(64\) \(48\)+\(56\)+\(64\)+\(40\)+\(56\)+\(48\)+\(40\)+\(63\)
8008.2.a \(63.9442019386\) \( \chi_{ 8008 }(1, \cdot) \) \(1\) \(180\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(5\)+\(6\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\)+\(10\)+\(10\)+\(11\)+\(11\)+\(12\)+\(14\)+\(15\) \(10\)+\(15\)+\(11\)+\(9\)+\(14\)+\(9\)+\(10\)+\(12\)+\(10\)+\(13\)+\(11\)+\(11\)+\(14\)+\(11\)+\(10\)+\(10\)
8009.2.a \(63.9521869788\) \( \chi_{ 8009 }(1, \cdot) \) \(1\) \(667\) \(306\)+\(361\) \(306\)+\(361\)
8010.2.a \(63.960172019\) \( \chi_{ 8010 }(1, \cdot) \) \(1\) \(144\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(\cdots\)+\(3\)+\(4\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(8\)+\(10\)+\(10\) \(10\)+\(4\)+\(8\)+\(6\)+\(11\)+\(11\)+\(9\)+\(13\)+\(6\)+\(8\)+\(4\)+\(10\)+\(10\)+\(12\)+\(14\)+\(8\)
8011.2.a \(63.9681570592\) \( \chi_{ 8011 }(1, \cdot) \) \(1\) \(667\) \(309\)+\(358\) \(309\)+\(358\)
8012.2.a \(63.9761420994\) \( \chi_{ 8012 }(1, \cdot) \) \(1\) \(167\) \(79\)+\(88\) \(0\)+\(0\)+\(88\)+\(79\)
8013.2.a \(63.9841271397\) \( \chi_{ 8013 }(1, \cdot) \) \(1\) \(445\) \(94\)+\(106\)+\(116\)+\(129\) \(116\)+\(106\)+\(129\)+\(94\)
8014.2.a \(63.9921121799\) \( \chi_{ 8014 }(1, \cdot) \) \(1\) \(333\) \(2\)+\(76\)+\(76\)+\(88\)+\(91\) \(76\)+\(91\)+\(90\)+\(76\)
8015.2.a \(64.0000972201\) \( \chi_{ 8015 }(1, \cdot) \) \(1\) \(455\) \(1\)+\(\cdots\)+\(1\)+\(3\)+\(38\)+\(44\)+\(45\)+\(49\)+\(62\)+\(67\)+\(68\)+\(73\) \(52\)+\(63\)+\(68\)+\(45\)+\(67\)+\(44\)+\(41\)+\(75\)
8016.2.a \(64.0080822603\) \( \chi_{ 8016 }(1, \cdot) \) \(1\) \(166\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(\cdots\)+\(5\)+\(7\)+\(7\)+\(8\)+\(8\)+\(8\)+\(9\)+\(9\)+\(9\)+\(10\)+\(11\)+\(12\)+\(13\) \(19\)+\(23\)+\(22\)+\(18\)+\(23\)+\(19\)+\(19\)+\(23\)
8017.2.a \(64.0160673005\) \( \chi_{ 8017 }(1, \cdot) \) \(1\) \(667\) \(327\)+\(340\) \(327\)+\(340\)
8018.2.a \(64.0240523407\) \( \chi_{ 8018 }(1, \cdot) \) \(1\) \(315\) \(1\)+\(2\)+\(2\)+\(30\)+\(32\)+\(34\)+\(34\)+\(41\)+\(43\)+\(47\)+\(49\) \(36\)+\(42\)+\(45\)+\(34\)+\(47\)+\(32\)+\(30\)+\(49\)
8019.2.a \(64.0320373809\) \( \chi_{ 8019 }(1, \cdot) \) \(1\) \(360\) \(3\)+\(3\)+\(21\)+\(\cdots\)+\(21\)+\(36\)+\(36\)+\(48\)+\(48\)+\(51\)+\(51\) \(87\)+\(99\)+\(93\)+\(81\)
8020.2.a \(64.0400224211\) \( \chi_{ 8020 }(1, \cdot) \) \(1\) \(132\) \(1\)+\(2\)+\(28\)+\(29\)+\(35\)+\(37\) \(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(37\)
8021.2.a \(64.0480074613\) \( \chi_{ 8021 }(1, \cdot) \) \(1\) \(617\) \(134\)+\(140\)+\(169\)+\(174\) \(140\)+\(169\)+\(174\)+\(134\)
8022.2.a \(64.0559925015\) \( \chi_{ 8022 }(1, \cdot) \) \(1\) \(189\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(7\)+\(7\)+\(8\)+\(8\)+\(9\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(13\)+\(13\)+\(14\)+\(14\)+\(15\)+\(16\) \(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(11\)+\(9\)+\(15\)+\(13\)+\(10\)+\(12\)+\(11\)+\(8\)+\(15\)+\(17\)+\(7\)
8023.2.a \(64.0639775417\) \( \chi_{ 8023 }(1, \cdot) \) \(1\) \(653\) \(3\)+\(155\)+\(158\)+\(165\)+\(172\) \(161\)+\(172\)+\(165\)+\(155\)
8024.2.a \(64.0719625819\) \( \chi_{ 8024 }(1, \cdot) \) \(1\) \(232\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(18\)+\(20\)+\(22\)+\(23\)+\(24\)+\(30\)+\(32\)+\(33\) \(28\)+\(31\)+\(30\)+\(27\)+\(34\)+\(25\)+\(24\)+\(33\)
8025.2.a \(64.0799476221\) \( \chi_{ 8025 }(1, \cdot) \) \(1\) \(336\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(6\)+\(7\)+\(10\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(16\)+\(16\)+\(17\)+\(17\)+\(18\)+\(18\)+\(22\)+\(22\)+\(29\)+\(29\) \(38\)+\(43\)+\(49\)+\(39\)+\(41\)+\(36\)+\(40\)+\(50\)
8026.2.a \(64.0879326623\) \( \chi_{ 8026 }(1, \cdot) \) \(1\) \(334\) \(71\)+\(81\)+\(86\)+\(96\) \(81\)+\(86\)+\(96\)+\(71\)
8027.2.a \(64.0959177025\) \( \chi_{ 8027 }(1, \cdot) \) \(1\) \(639\) \(1\)+\(1\)+\(143\)+\(149\)+\(169\)+\(176\) \(149\)+\(170\)+\(177\)+\(143\)
8028.2.a \(64.1039027427\) \( \chi_{ 8028 }(1, \cdot) \) \(1\) \(92\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(5\)+\(7\)+\(8\)+\(8\)+\(11\)+\(11\)+\(16\)+\(16\) \(0\)+\(0\)+\(0\)+\(0\)+\(18\)+\(18\)+\(28\)+\(28\)
8028.2.h \(64.1039027427\) \( \chi_{ 8028 }(4013, \cdot) \) \(2\) \(76\) \(76\)
8029.2.a \(64.1118877829\) \( \chi_{ 8029 }(1, \cdot) \) \(1\) \(539\) \(64\)+\(64\)+\(66\)+\(66\)+\(69\)+\(69\)+\(70\)+\(71\) \(66\)+\(71\)+\(69\)+\(64\)+\(69\)+\(64\)+\(66\)+\(70\)
8030.2.a \(64.1198728231\) \( \chi_{ 8030 }(1, \cdot) \) \(1\) \(241\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(\cdots\)+\(2\)+\(3\)+\(3\)+\(3\)+\(4\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(7\)+\(8\)+\(11\)+\(14\)+\(15\)+\(15\)+\(15\)+\(17\)+\(17\)+\(18\)+\(18\)+\(19\) \(12\)+\(18\)+\(20\)+\(11\)+\(15\)+\(14\)+\(13\)+\(17\)+\(16\)+\(15\)+\(13\)+\(17\)+\(12\)+\(18\)+\(19\)+\(11\)
8031.2.a \(64.1278578633\) \( \chi_{ 8031 }(1, \cdot) \) \(1\) \(447\) \(92\)+\(102\)+\(121\)+\(132\) \(102\)+\(121\)+\(132\)+\(92\)
8032.2.a \(64.1358429035\) \( \chi_{ 8032 }(1, \cdot) \) \(1\) \(250\) \(1\)+\(\cdots\)+\(1\)+\(28\)+\(28\)+\(30\)+\(\cdots\)+\(30\)+\(35\)+\(35\) \(59\)+\(66\)+\(66\)+\(59\)
8033.2.a \(64.1438279437\) \( \chi_{ 8033 }(1, \cdot) \) \(1\) \(645\) \(1\)+\(153\)+\(154\)+\(168\)+\(169\) \(153\)+\(169\)+\(169\)+\(154\)
8034.2.a \(64.1518129839\) \( \chi_{ 8034 }(1, \cdot) \) \(1\) \(205\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(2\)+\(4\)+\(7\)+\(8\)+\(8\)+\(9\)+\(10\)+\(11\)+\(11\)+\(11\)+\(12\)+\(13\)+\(13\)+\(14\)+\(14\)+\(14\)+\(15\)+\(16\) \(12\)+\(14\)+\(15\)+\(10\)+\(12\)+\(14\)+\(12\)+\(13\)+\(15\)+\(11\)+\(9\)+\(16\)+\(9\)+\(17\)+\(18\)+\(8\)
8035.2.a \(64.1597980241\) \( \chi_{ 8035 }(1, \cdot) \) \(1\) \(535\) \(1\)+\(114\)+\(127\)+\(140\)+\(153\) \(140\)+\(127\)+\(154\)+\(114\)
8036.2.a \(64.1677830643\) \( \chi_{ 8036 }(1, \cdot) \) \(1\) \(136\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(4\)+\(5\)+\(5\)+\(5\)+\(8\)+\(8\)+\(10\)+\(10\)+\(15\)+\(15\)+\(20\)+\(20\) \(0\)+\(0\)+\(0\)+\(0\)+\(37\)+\(29\)+\(29\)+\(41\)
8037.2.a \(64.1757681045\) \( \chi_{ 8037 }(1, \cdot) \) \(1\) \(344\) \(1\)+\(\cdots\)+\(1\)+\(3\)+\(3\)+\(4\)+\(4\)+\(6\)+\(7\)+\(7\)+\(7\)+\(12\)+\(16\)+\(18\)+\(23\)+\(23\)+\(23\)+\(24\)+\(24\)+\(34\)+\(\cdots\)+\(34\) \(34\)+\(34\)+\(34\)+\(34\)+\(53\)+\(51\)+\(46\)+\(58\)
8038.2.a \(64.1837531447\) \( \chi_{ 8038 }(1, \cdot) \) \(1\) \(334\) \(75\)+\(83\)+\(84\)+\(92\) \(84\)+\(83\)+\(92\)+\(75\)
8039.2.a \(64.1917381849\) \( \chi_{ 8039 }(1, \cdot) \) \(1\) \(670\) \(279\)+\(391\) \(279\)+\(391\)
8040.2.a \(64.1997232251\) \( \chi_{ 8040 }(1, \cdot) \) \(1\) \(132\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(5\)+\(5\)+\(5\)+\(6\)+\(6\)+\(6\)+\(7\)+\(8\)+\(\cdots\)+\(8\)+\(9\)+\(\cdots\)+\(9\)+\(10\) \(9\)+\(7\)+\(11\)+\(6\)+\(10\)+\(6\)+\(6\)+\(11\)+\(8\)+\(9\)+\(8\)+\(8\)+\(9\)+\(8\)+\(11\)+\(5\)
8041.2.a \(64.2077082653\) \( \chi_{ 8041 }(1, \cdot) \) \(1\) \(559\) \(1\)+\(1\)+\(60\)+\(62\)+\(66\)+\(66\)+\(69\)+\(74\)+\(78\)+\(82\) \(74\)+\(66\)+\(67\)+\(69\)+\(78\)+\(62\)+\(61\)+\(82\)
8042.2.a \(64.2156933055\) \( \chi_{ 8042 }(1, \cdot) \) \(1\) \(336\) \(67\)+\(82\)+\(86\)+\(101\) \(82\)+\(86\)+\(101\)+\(67\)
8043.2.a \(64.2236783457\) \( \chi_{ 8043 }(1, \cdot) \) \(1\) \(383\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(40\)+\(41\)+\(41\)+\(44\)+\(46\)+\(50\)+\(52\)+\(53\) \(46\)+\(50\)+\(54\)+\(42\)+\(49\)+\(45\)+\(43\)+\(54\)
8044.2.a \(64.2316633859\) \( \chi_{ 8044 }(1, \cdot) \) \(1\) \(167\) \(80\)+\(87\) \(0\)+\(0\)+\(87\)+\(80\)
8045.2.a \(64.2396484261\) \( \chi_{ 8045 }(1, \cdot) \) \(1\) \(537\) \(1\)+\(126\)+\(127\)+\(141\)+\(142\) \(126\)+\(142\)+\(142\)+\(127\)
8046.2.a \(64.2476334663\) \( \chi_{ 8046 }(1, \cdot) \) \(1\) \(196\) \(1\)+\(1\)+\(2\)+\(2\)+\(8\)+\(8\)+\(9\)+\(9\)+\(12\)+\(\cdots\)+\(12\)+\(14\)+\(14\)+\(16\)+\(16\) \(21\)+\(28\)+\(28\)+\(21\)+\(28\)+\(21\)+\(21\)+\(28\)
8047.2.a \(64.2556185065\) \( \chi_{ 8047 }(1, \cdot) \) \(1\) \(619\) \(2\)+\(142\)+\(151\)+\(156\)+\(168\) \(151\)+\(158\)+\(168\)+\(142\)
8048.2.a \(64.2636035467\) \( \chi_{ 8048 }(1, \cdot) \) \(1\) \(251\) \(1\)+\(\cdots\)+\(1\)+\(2\)+\(3\)+\(5\)+\(5\)+\(10\)+\(12\)+\(12\)+\(21\)+\(21\)+\(26\)+\(28\)+\(29\)+\(33\)+\(33\) \(63\)+\(63\)+\(73\)+\(52\)
8049.2.a \(64.2715885869\) \( \chi_{ 8049 }(1, \cdot) \) \(1\) \(447\) \(95\)+\(104\)+\(119\)+\(129\) \(104\)+\(119\)+\(129\)+\(95\)
Next

Download all search results for