Properties

Label 8015.2.a
Level 8015
Weight 2
Character orbit a
Rep. character \(\chi_{8015}(1,\cdot)\)
Character field \(\Q\)
Dimension 455
Newforms 15
Sturm bound 1840
Trace bound 3

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 8015 = 5 \cdot 7 \cdot 229 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8015.a (trivial)
Character field: \(\Q\)
Newforms: \( 15 \)
Sturm bound: \(1840\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8015))\).

Total New Old
Modular forms 924 455 469
Cusp forms 917 455 462
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)\(229\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(52\)
\(+\)\(+\)\(-\)\(-\)\(63\)
\(+\)\(-\)\(+\)\(-\)\(68\)
\(+\)\(-\)\(-\)\(+\)\(45\)
\(-\)\(+\)\(+\)\(-\)\(67\)
\(-\)\(+\)\(-\)\(+\)\(44\)
\(-\)\(-\)\(+\)\(+\)\(41\)
\(-\)\(-\)\(-\)\(-\)\(75\)
Plus space\(+\)\(182\)
Minus space\(-\)\(273\)

Trace form

\(455q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 453q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 3q^{7} \) \(\mathstrut +\mathstrut 33q^{8} \) \(\mathstrut +\mathstrut 471q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(455q \) \(\mathstrut +\mathstrut 5q^{2} \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 453q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 3q^{7} \) \(\mathstrut +\mathstrut 33q^{8} \) \(\mathstrut +\mathstrut 471q^{9} \) \(\mathstrut -\mathstrut 3q^{10} \) \(\mathstrut +\mathstrut 8q^{11} \) \(\mathstrut +\mathstrut 20q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut q^{14} \) \(\mathstrut +\mathstrut 453q^{16} \) \(\mathstrut +\mathstrut 14q^{17} \) \(\mathstrut +\mathstrut 25q^{18} \) \(\mathstrut +\mathstrut 12q^{19} \) \(\mathstrut -\mathstrut 7q^{20} \) \(\mathstrut +\mathstrut 20q^{22} \) \(\mathstrut +\mathstrut 32q^{23} \) \(\mathstrut +\mathstrut 12q^{24} \) \(\mathstrut +\mathstrut 455q^{25} \) \(\mathstrut -\mathstrut 2q^{26} \) \(\mathstrut +\mathstrut 64q^{27} \) \(\mathstrut +\mathstrut 21q^{28} \) \(\mathstrut +\mathstrut 22q^{29} \) \(\mathstrut -\mathstrut 4q^{30} \) \(\mathstrut +\mathstrut 16q^{31} \) \(\mathstrut +\mathstrut 81q^{32} \) \(\mathstrut +\mathstrut 72q^{33} \) \(\mathstrut +\mathstrut 26q^{34} \) \(\mathstrut +\mathstrut 7q^{35} \) \(\mathstrut +\mathstrut 481q^{36} \) \(\mathstrut +\mathstrut 2q^{37} \) \(\mathstrut +\mathstrut 4q^{38} \) \(\mathstrut +\mathstrut 68q^{39} \) \(\mathstrut -\mathstrut 15q^{40} \) \(\mathstrut +\mathstrut 38q^{41} \) \(\mathstrut -\mathstrut 12q^{42} \) \(\mathstrut +\mathstrut 12q^{43} \) \(\mathstrut +\mathstrut 20q^{44} \) \(\mathstrut +\mathstrut 3q^{45} \) \(\mathstrut -\mathstrut 32q^{46} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut 4q^{48} \) \(\mathstrut +\mathstrut 455q^{49} \) \(\mathstrut +\mathstrut 5q^{50} \) \(\mathstrut -\mathstrut 4q^{51} \) \(\mathstrut +\mathstrut 14q^{52} \) \(\mathstrut -\mathstrut 30q^{53} \) \(\mathstrut -\mathstrut 16q^{54} \) \(\mathstrut +\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut 3q^{56} \) \(\mathstrut +\mathstrut 24q^{57} \) \(\mathstrut +\mathstrut 22q^{58} \) \(\mathstrut +\mathstrut 28q^{59} \) \(\mathstrut -\mathstrut 12q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut +\mathstrut 16q^{62} \) \(\mathstrut +\mathstrut 7q^{63} \) \(\mathstrut +\mathstrut 509q^{64} \) \(\mathstrut +\mathstrut 14q^{65} \) \(\mathstrut +\mathstrut 24q^{66} \) \(\mathstrut +\mathstrut 28q^{67} \) \(\mathstrut +\mathstrut 114q^{68} \) \(\mathstrut -\mathstrut 8q^{69} \) \(\mathstrut -\mathstrut 3q^{70} \) \(\mathstrut +\mathstrut 16q^{71} \) \(\mathstrut +\mathstrut 149q^{72} \) \(\mathstrut +\mathstrut 38q^{73} \) \(\mathstrut +\mathstrut 46q^{74} \) \(\mathstrut +\mathstrut 4q^{75} \) \(\mathstrut +\mathstrut 76q^{76} \) \(\mathstrut +\mathstrut 20q^{77} \) \(\mathstrut +\mathstrut 72q^{78} \) \(\mathstrut +\mathstrut 12q^{79} \) \(\mathstrut +\mathstrut q^{80} \) \(\mathstrut +\mathstrut 559q^{81} \) \(\mathstrut +\mathstrut 98q^{82} \) \(\mathstrut -\mathstrut 12q^{83} \) \(\mathstrut -\mathstrut 12q^{84} \) \(\mathstrut -\mathstrut 6q^{85} \) \(\mathstrut +\mathstrut 68q^{86} \) \(\mathstrut -\mathstrut 40q^{87} \) \(\mathstrut +\mathstrut 108q^{88} \) \(\mathstrut -\mathstrut 2q^{89} \) \(\mathstrut -\mathstrut 7q^{90} \) \(\mathstrut -\mathstrut 2q^{91} \) \(\mathstrut +\mathstrut 32q^{92} \) \(\mathstrut +\mathstrut 16q^{93} \) \(\mathstrut +\mathstrut 8q^{94} \) \(\mathstrut -\mathstrut 4q^{95} \) \(\mathstrut +\mathstrut 108q^{96} \) \(\mathstrut +\mathstrut 78q^{97} \) \(\mathstrut +\mathstrut 5q^{98} \) \(\mathstrut -\mathstrut 20q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8015))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 5 7 229
8015.2.a.a \(1\) \(64.000\) \(\Q\) None \(-2\) \(-3\) \(1\) \(1\) \(-\) \(-\) \(-\) \(q-2q^{2}-3q^{3}+2q^{4}+q^{5}+6q^{6}+\cdots\)
8015.2.a.b \(1\) \(64.000\) \(\Q\) None \(-1\) \(-2\) \(1\) \(1\) \(-\) \(-\) \(+\) \(q-q^{2}-2q^{3}-q^{4}+q^{5}+2q^{6}+q^{7}+\cdots\)
8015.2.a.c \(1\) \(64.000\) \(\Q\) None \(-1\) \(1\) \(1\) \(1\) \(-\) \(-\) \(+\) \(q-q^{2}+q^{3}-q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
8015.2.a.d \(1\) \(64.000\) \(\Q\) None \(1\) \(0\) \(1\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}-q^{4}+q^{5}+q^{7}-3q^{8}-3q^{9}+\cdots\)
8015.2.a.e \(1\) \(64.000\) \(\Q\) None \(1\) \(2\) \(-1\) \(-1\) \(+\) \(+\) \(-\) \(q+q^{2}+2q^{3}-q^{4}-q^{5}+2q^{6}-q^{7}+\cdots\)
8015.2.a.f \(1\) \(64.000\) \(\Q\) None \(2\) \(1\) \(1\) \(1\) \(-\) \(-\) \(+\) \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}+q^{7}+\cdots\)
8015.2.a.g \(3\) \(64.000\) 3.3.148.1 None \(1\) \(-1\) \(-3\) \(-3\) \(+\) \(+\) \(+\) \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(\beta _{1}+\beta _{2})q^{4}+\cdots\)
8015.2.a.h \(38\) \(64.000\) None \(-6\) \(-9\) \(38\) \(38\) \(-\) \(-\) \(+\)
8015.2.a.i \(44\) \(64.000\) None \(-2\) \(0\) \(44\) \(-44\) \(-\) \(+\) \(-\)
8015.2.a.j \(45\) \(64.000\) None \(-6\) \(0\) \(-45\) \(45\) \(+\) \(-\) \(-\)
8015.2.a.k \(49\) \(64.000\) None \(-3\) \(-10\) \(-49\) \(-49\) \(+\) \(+\) \(+\)
8015.2.a.l \(62\) \(64.000\) None \(2\) \(11\) \(-62\) \(-62\) \(+\) \(+\) \(-\)
8015.2.a.m \(67\) \(64.000\) None \(3\) \(0\) \(67\) \(-67\) \(-\) \(+\) \(+\)
8015.2.a.n \(68\) \(64.000\) None \(9\) \(0\) \(-68\) \(68\) \(+\) \(-\) \(+\)
8015.2.a.o \(73\) \(64.000\) None \(7\) \(14\) \(73\) \(73\) \(-\) \(-\) \(-\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8015))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8015)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(229))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1145))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1603))\)\(^{\oplus 2}\)