Defining parameters
Level: | \( N \) | \(=\) | \( 8013 = 3 \cdot 2671 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8013.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(1781\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8013))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 892 | 445 | 447 |
Cusp forms | 889 | 445 | 444 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(2671\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(216\) | \(116\) | \(100\) | \(216\) | \(116\) | \(100\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(-\) | \(-\) | \(229\) | \(106\) | \(123\) | \(228\) | \(106\) | \(122\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(230\) | \(129\) | \(101\) | \(229\) | \(129\) | \(100\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(217\) | \(94\) | \(123\) | \(216\) | \(94\) | \(122\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(433\) | \(210\) | \(223\) | \(432\) | \(210\) | \(222\) | \(1\) | \(0\) | \(1\) | ||||
Minus space | \(-\) | \(459\) | \(235\) | \(224\) | \(457\) | \(235\) | \(222\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8013))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 2671 | |||||||
8013.2.a.a | $94$ | $63.984$ | None | \(-13\) | \(94\) | \(-14\) | \(-55\) | $-$ | $-$ | |||
8013.2.a.b | $106$ | $63.984$ | None | \(15\) | \(-106\) | \(16\) | \(35\) | $+$ | $-$ | |||
8013.2.a.c | $116$ | $63.984$ | None | \(-16\) | \(-116\) | \(-20\) | \(-33\) | $+$ | $+$ | |||
8013.2.a.d | $129$ | $63.984$ | None | \(15\) | \(129\) | \(16\) | \(61\) | $-$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8013))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8013)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(2671))\)\(^{\oplus 2}\)