Properties

Label 8013.2.a
Level $8013$
Weight $2$
Character orbit 8013.a
Rep. character $\chi_{8013}(1,\cdot)$
Character field $\Q$
Dimension $445$
Newform subspaces $4$
Sturm bound $1781$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8013 = 3 \cdot 2671 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8013.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(1781\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8013))\).

Total New Old
Modular forms 892 445 447
Cusp forms 889 445 444
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(2671\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(216\)\(116\)\(100\)\(216\)\(116\)\(100\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(229\)\(106\)\(123\)\(228\)\(106\)\(122\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(230\)\(129\)\(101\)\(229\)\(129\)\(100\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(217\)\(94\)\(123\)\(216\)\(94\)\(122\)\(1\)\(0\)\(1\)
Plus space\(+\)\(433\)\(210\)\(223\)\(432\)\(210\)\(222\)\(1\)\(0\)\(1\)
Minus space\(-\)\(459\)\(235\)\(224\)\(457\)\(235\)\(222\)\(2\)\(0\)\(2\)

Trace form

\( 445 q + q^{2} + q^{3} + 449 q^{4} - 2 q^{5} + 3 q^{6} + 8 q^{7} + 9 q^{8} + 445 q^{9} + 2 q^{10} - q^{12} + 2 q^{13} + 16 q^{14} + 6 q^{15} + 461 q^{16} - 6 q^{17} + q^{18} + 8 q^{19} + 22 q^{20} + 4 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8013))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 2671
8013.2.a.a 8013.a 1.a $94$ $63.984$ None 8013.2.a.a \(-13\) \(94\) \(-14\) \(-55\) $-$ $-$ $\mathrm{SU}(2)$
8013.2.a.b 8013.a 1.a $106$ $63.984$ None 8013.2.a.b \(15\) \(-106\) \(16\) \(35\) $+$ $-$ $\mathrm{SU}(2)$
8013.2.a.c 8013.a 1.a $116$ $63.984$ None 8013.2.a.c \(-16\) \(-116\) \(-20\) \(-33\) $+$ $+$ $\mathrm{SU}(2)$
8013.2.a.d 8013.a 1.a $129$ $63.984$ None 8013.2.a.d \(15\) \(129\) \(16\) \(61\) $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8013))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8013)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(2671))\)\(^{\oplus 2}\)