Properties

Label 5.5.65657.1-25.1-b1
Base field 5.5.65657.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+3a+3\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-2a-3\right){y}={x}^{3}+\left(-a^{4}+5a^{2}-2\right){x}^{2}+\left(18a^{4}-34a^{3}-65a^{2}+92a+27\right){x}-50a^{4}+87a^{3}+183a^{2}-235a-65\)
sage: E = EllipticCurve([K([3,3,-4,-1,1]),K([-2,0,5,0,-1]),K([-3,-2,5,1,-1]),K([27,92,-65,-34,18]),K([-65,-235,183,87,-50])])
 
gp: E = ellinit([Polrev([3,3,-4,-1,1]),Polrev([-2,0,5,0,-1]),Polrev([-3,-2,5,1,-1]),Polrev([27,92,-65,-34,18]),Polrev([-65,-235,183,87,-50])], K);
 
magma: E := EllipticCurve([K![3,3,-4,-1,1],K![-2,0,5,0,-1],K![-3,-2,5,1,-1],K![27,92,-65,-34,18],K![-65,-235,183,87,-50]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+3a^2-2a)\) = \((-a^2+a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^4+8a^3+30a^2-13a-16)\) = \((-a^2+a+2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -78125 \) = \(-5^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{144184611}{5} a^{4} - \frac{255843129}{5} a^{3} - \frac{524006273}{5} a^{2} + \frac{693618211}{5} a + \frac{186593617}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 2 a^{3} - 4 a^{2} + 6 a + 2 : -4 a^{4} + 9 a^{3} + 14 a^{2} - 26 a - 6 : 1\right)$
Height \(0.0022474568430428602391936235774522493923\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0022474568430428602391936235774522493923 \)
Period: \( 8560.3931330344619768579587207605095591 \)
Tamagawa product: \( 4 \)
Torsion order: \(1\)
Leading coefficient: \( 1.50167015 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+2)\) \(5\) \(4\) \(I_{1}^{*}\) Additive \(1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.1-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.