Properties

Label 4.4.19821.1-48.1-d1
Base field 4.4.19821.1
Conductor norm \( 48 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-2a\right){x}{y}+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+3a-2\right){y}={x}^{3}+\left(-a^{2}+a+3\right){x}^{2}+\left(2a^{3}+a^{2}-19a-7\right){x}+\frac{25}{3}a^{3}+\frac{1}{3}a^{2}-64a-24\)
sage: E = EllipticCurve([K([0,-2,1/3,1/3]),K([3,1,-1,0]),K([-2,3,2/3,-1/3]),K([-7,-19,1,2]),K([-24,-64,1/3,25/3])])
 
gp: E = ellinit([Polrev([0,-2,1/3,1/3]),Polrev([3,1,-1,0]),Polrev([-2,3,2/3,-1/3]),Polrev([-7,-19,1,2]),Polrev([-24,-64,1/3,25/3])], K);
 
magma: E := EllipticCurve([K![0,-2,1/3,1/3],K![3,1,-1,0],K![-2,3,2/3,-1/3],K![-7,-19,1,2],K![-24,-64,1/3,25/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2/3a^3-2/3a^2+6a+4)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 48 \) = \(3\cdot16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-10/3a^3+26/3a^2+8a-22)\) = \((-1/3a^3-1/3a^2+3a+2)^{8}\cdot(2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 104976 \) = \(3^{8}\cdot16\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{900817}{162} a^{3} - \frac{1470923}{162} a^{2} - \frac{3168587}{81} a + \frac{8660297}{162} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{3} a^{3} + \frac{1}{3} a^{2} - 3 a - 1 : -a^{2} - a + 1 : 1\right)$
Height \(0.10007108313552763941278379595207531034\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.10007108313552763941278379595207531034 \)
Period: \( 251.18956260061070227714832872373158503 \)
Tamagawa product: \( 8 \)  =  \(2^{3}\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.71343627346412 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((2)\) \(16\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 48.1-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.