Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$14680$ |
$181914560$ |
$1789005313960$ |
$21834171362099200$ |
$266641937494299141400$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$26$ |
$640$ |
$12086$ |
$278812$ |
$6436506$ |
$148027840$ |
$3404885622$ |
$78311408892$ |
$1801150935578$ |
$41426508379200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 108 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=22 x^8+16 x^7+12 x^6+10 x^5+11 x^4+15 x^3+13 x+17$
- $y^2=22 x^8+12 x^7+11 x^6+18 x^4+22 x^3+5 x^2+8 x+8$
- $y^2=22 x^8+16 x^7+19 x^6+16 x^5+15 x^4+11 x^3+14 x^2+19 x+18$
- $y^2=22 x^8+3 x^7+7 x^6+9 x^5+3 x^4+14 x^3+19 x^2+12 x+10$
- $y^2=x^7+x^6+17 x^5+x^4+6 x^3+22 x^2+18 x+2$
- $y^2=22 x^8+5 x^7+10 x^6+6 x^5+15 x^4+5 x^3+10 x^2+6 x+16$
- $y^2=x^7+12 x^6+17 x^5+2 x^4+17 x^3+8 x^2+x+17$
- $y^2=22 x^8+13 x^7+18 x^6+6 x^5+15 x^4+6 x^3+16 x^2+16 x+20$
- $y^2=22 x^8+7 x^7+13 x^6+7 x^5+11 x^4+7 x^3+12 x^2+21$
- $y^2=22 x^8+14 x^7+20 x^6+11 x^5+3 x^4+11 x^3+4 x^2+20 x+6$
- $y^2=22 x^8+21 x^7+12 x^6+9 x^5+x^4+9 x^3+2 x^2+11 x+12$
- $y^2=22 x^8+18 x^7+14 x^6+9 x^5+5 x^4+21 x^3+20 x^2+x+1$
- $y^2=x^8+7 x^7+9 x^6+21 x^5+14 x^4+7 x^3+14 x^2+18$
- $y^2=22 x^8+11 x^7+11 x^6+16 x^5+7 x^4+3 x^3+4 x^2+17 x+11$
- $y^2=22 x^8+x^7+18 x^6+3 x^5+4 x^4+16 x^3+4 x^2+5 x+20$
- $y^2=x^8+x^7+17 x^6+20 x^5+17 x^3+18 x^2+21 x+4$
- $y^2=22 x^8+8 x^7+16 x^6+10 x^5+15 x^4+3 x^3+9 x^2+3 x+4$
- $y^2=22 x^8+18 x^7+22 x^6+9 x^5+20 x^4+17 x^3+x^2+18 x+4$
- $y^2=x^8+18 x^7+12 x^6+12 x^5+8 x^4+15 x^3+20 x^2+21 x+17$
- $y^2=22 x^8+13 x^7+6 x^6+2 x^5+6 x^4+13 x^3+21 x^2+22 x+4$
- and 88 more
- $y^2=x^8+x^7+x^6+20 x^5+22 x^4+8 x^3+17 x^2+6 x+20$
- $y^2=x^8+21 x^7+21 x^6+2 x^5+9 x^4+8 x^3+7 x^2+16 x+16$
- $y^2=x^8+8 x^7+14 x^6+17 x^5+2 x^3+15 x^2+3 x+21$
- $y^2=x^7+15 x^6+19 x^5+17 x^4+22 x^3+9 x^2+22 x+10$
- $y^2=22 x^7+22 x^6+14 x^5+20 x^4+4 x^3+11 x^2+11 x+19$
- $y^2=22 x^8+2 x^7+14 x^6+x^5+3 x^4+3 x^3+11 x^2+10 x+2$
- $y^2=x^8+13 x^7+17 x^6+9 x^5+x^4+5 x^3+x+16$
- $y^2=x^8+3 x^7+4 x^6+3 x^5+20 x^4+13 x^3+2 x^2+11 x+9$
- $y^2=22 x^8+19 x^7+20 x^6+14 x^5+5 x^4+11 x^3+5 x^2+6 x+5$
- $y^2=x^8+3 x^7+x^6+15 x^5+20 x^4+6 x^3+22 x^2+13 x+14$
- $y^2=22 x^8+16 x^7+2 x^6+6 x^5+10 x^4+8 x^3+8 x^2+12 x+16$
- $y^2=x^8+12 x^7+17 x^6+x^5+9 x^4+8 x^3+22 x^2+13 x+22$
- $y^2=22 x^8+16 x^7+4 x^6+16 x^5+6 x^4+15 x^3+19 x^2+21 x+13$
- $y^2=x^8+11 x^7+3 x^6+16 x^5+17 x^4+15 x^3+7 x^2+14 x+8$
- $y^2=x^7+19 x^6+8 x^5+12 x^4+15 x^3+18 x^2+4 x+6$
- $y^2=22 x^8+2 x^7+11 x^6+20 x^5+21 x^4+12 x^3+3 x^2+5 x+5$
- $y^2=x^8+8 x^7+16 x^6+x^5+2 x^3+5 x^2+13 x+7$
- $y^2=22 x^8+12 x^7+20 x^6+8 x^5+11 x^4+19 x^3+12 x^2+21 x+13$
- $y^2=22 x^8+4 x^7+15 x^6+8 x^5+22 x^4+17 x^3+6 x^2+3 x+13$
- $y^2=x^7+6 x^5+17 x^4+6 x^3+x^2+19 x+7$
- $y^2=x^8+11 x^7+4 x^6+5 x^5+13 x^4+20 x^2+14 x+17$
- $y^2=x^8+11 x^7+17 x^6+15 x^5+9 x^4+4 x^3+8 x^2+4 x+8$
- $y^2=x^8+x^7+21 x^6+x^5+7 x^4+x^3+20 x^2+5 x+10$
- $y^2=22 x^8+5 x^7+6 x^6+15 x^5+20 x^4+15 x^3+5 x^2+2 x$
- $y^2=22 x^7+20 x^6+21 x^5+15 x^4+6 x^3+12 x^2+2 x+19$
- $y^2=x^8+12 x^7+9 x^6+10 x^5+9 x^4+21 x^3+15 x^2+9 x+20$
- $y^2=22 x^8+17 x^7+21 x^6+18 x^5+19 x^4+15 x^3+13 x^2+20 x+9$
- $y^2=22 x^8+19 x^7+16 x^6+7 x^5+15 x^4+13 x^3+11 x^2+11 x+13$
- $y^2=x^8+13 x^7+3 x^6+5 x^5+18 x^4+17 x^3+22 x^2+14 x+16$
- $y^2=x^8+6 x^7+7 x^6+9 x^5+16 x^4+4 x^3+5 x^2+10 x+8$
- $y^2=22 x^8+21 x^7+5 x^6+15 x^5+14 x^4+6 x^3+15 x^2+4 x+10$
- $y^2=x^8+x^7+4 x^6+12 x^5+22 x^4+17 x^3+15 x^2+6 x+6$
- $y^2=x^8+5 x^7+21 x^6+4 x^5+5 x^4+13 x^3+12 x^2+13 x+7$
- $y^2=22 x^8+8 x^7+7 x^6+3 x^5+20 x^4+11 x^3+16 x^2+21 x+8$
- $y^2=x^8+11 x^7+16 x^6+17 x^5+x^4+8 x^3+6 x^2+11$
- $y^2=x^8+16 x^7+18 x^6+2 x^5+15 x^4+3 x^3+21 x^2+19 x+10$
- $y^2=x^8+22 x^7+21 x^6+4 x^5+16 x^3+12 x^2+8 x+13$
- $y^2=x^8+4 x^7+21 x^6+8 x^5+14 x^3+2 x^2+10 x+7$
- $y^2=22 x^8+x^7+15 x^5+15 x^4+14 x^3+2 x^2+10$
- $y^2=22 x^8+12 x^7+18 x^6+13 x^5+11 x^4+14 x^3+16 x^2+8 x+16$
- $y^2=22 x^8+8 x^7+5 x^6+11 x^5+5 x^4+21 x^3+13 x^2+20 x+5$
- $y^2=22 x^8+3 x^7+19 x^6+3 x^5+15 x^4+13 x^3+5 x^2+7 x+14$
- $y^2=22 x^8+19 x^7+9 x^6+11 x^5+17 x^4+6 x^3+15 x^2+17 x+15$
- $y^2=22 x^8+12 x^7+x^6+11 x^5+22 x^4+22 x^3+x^2+15 x+8$
- $y^2=22 x^8+9 x^7+18 x^6+16 x^5+2 x^4+4 x^3+10 x^2+x+21$
- $y^2=22 x^8+22 x^7+22 x^6+18 x^5+8 x^4+6 x^3+20 x^2+17 x+18$
- $y^2=22 x^8+10 x^7+9 x^6+20 x^5+11 x^4+21 x^3+21 x^2+x+3$
- $y^2=22 x^8+3 x^7+20 x^6+2 x^5+2 x^4+14 x^3+22 x^2+8 x+3$
- $y^2=22 x^8+4 x^7+19 x^6+14 x^5+18 x^4+5 x^3+15 x^2+22 x+3$
- $y^2=22 x^8+11 x^7+14 x^6+22 x^5+11 x^4+x^3+17 x^2+17 x+6$
- $y^2=x^8+10 x^7+6 x^6+6 x^5+2 x^4+4 x^3+8 x^2+20 x+2$
- $y^2=x^8+x^7+11 x^6+4 x^5+8 x^4+15 x^3+16 x^2+9 x+11$
- $y^2=x^8+17 x^7+9 x^6+22 x^5+21 x^4+17 x^3+9 x^2+8 x+16$
- $y^2=x^8+13 x^7+13 x^6+10 x^4+2 x^3+3 x^2+8 x+1$
- $y^2=22 x^8+7 x^7+2 x^6+16 x^5+x^4+14 x^3+18 x^2+11$
- $y^2=22 x^8+5 x^7+13 x^6+x^5+3 x^4+x^3+13 x^2+7 x+21$
- $y^2=x^8+22 x^7+16 x^6+14 x^5+x^4+8 x^3+2 x^2+3 x+1$
- $y^2=x^8+2 x^7+16 x^6+3 x^5+22 x^4+20 x^3+2 x^2+12 x+21$
- $y^2=x^8+16 x^7+4 x^6+9 x^5+18 x^3+13 x^2+9 x+17$
- $y^2=x^8+20 x^7+7 x^6+12 x^5+3 x^4+2 x^3+19 x^2+9 x+20$
- $y^2=x^8+20 x^7+21 x^6+2 x^5+7 x^4+13 x^3+x^2+12 x+3$
- $y^2=22 x^8+18 x^7+2 x^6+11 x^5+11 x^4+21 x^3+17 x^2+14 x+21$
- $y^2=x^8+9 x^7+22 x^5+9 x^4+5 x^3+21 x^2+14 x+13$
- $y^2=x^8+15 x^7+20 x^6+5 x^5+11 x^4+6 x^3+9 x^2+21 x+14$
- $y^2=x^8+12 x^7+2 x^6+5 x^5+14 x^4+6 x^3+13 x^2+5 x+4$
- $y^2=22 x^8+6 x^7+2 x^6+5 x^5+7 x^4+21 x^3+16 x^2+9 x+14$
- $y^2=22 x^8+22 x^7+7 x^6+22 x^5+11 x^4+x^3+7 x^2+5 x+12$
- $y^2=22 x^8+12 x^7+20 x^6+8 x^5+10 x^4+21 x^3+15 x^2+14 x+15$
- $y^2=x^8+4 x^6+5 x^5+7 x^4+15 x^3+9 x+7$
- $y^2=22 x^8+8 x^7+18 x^6+19 x^5+x^4+11 x^3+14 x^2+10 x+8$
- $y^2=22 x^8+13 x^7+x^6+18 x^5+16 x^4+16 x^3+2 x^2+3 x+5$
- $y^2=x^8+2 x^7+22 x^6+2 x^5+5 x^4+8 x^3+21 x+14$
- $y^2=x^8+6 x^7+19 x^6+11 x^5+8 x^4+7 x^3+13 x^2+12 x+14$
- $y^2=x^8+14 x^7+12 x^6+6 x^5+13 x^4+13 x^3+3 x^2+20 x+18$
- $y^2=x^8+2 x^7+7 x^5+11 x^4+9 x^3+18 x^2+6 x+12$
- $y^2=x^8+4 x^7+3 x^6+14 x^5+11 x^4+15 x^3+7 x^2+4 x+3$
- $y^2=22 x^8+9 x^7+2 x^6+12 x^5+2 x^4+20 x^3+2 x+9$
- $y^2=x^8+4 x^7+x^6+11 x^5+2 x^4+20 x^2+14 x+20$
- $y^2=x^8+21 x^7+11 x^6+8 x^5+7 x^4+16 x^3+10 x^2+17 x+3$
- $y^2=x^8+4 x^7+12 x^6+4 x^5+11 x^4+21 x^3+10 x+8$
- $y^2=22 x^8+13 x^7+16 x^6+11 x^5+18 x^4+11 x^3+3 x^2+4 x+20$
- $y^2=22 x^8+15 x^7+15 x^6+x^5+6 x^4+5 x^3+5 x^2+21 x+8$
- $y^2=22 x^8+19 x^7+6 x^6+x^4+16 x^3+18 x^2+15$
- $y^2=22 x^8+7 x^7+17 x^6+11 x^5+4 x^4+13 x^3+19 x^2+14 x+1$
- $y^2=22 x^8+15 x^7+21 x^6+4 x^5+12 x^4+4 x^3+11 x^2+21 x+3$
- $y^2=22 x^8+15 x^7+18 x^6+18 x^5+19 x^4+11 x^3+2 x^2+7 x+18$
- $y^2=22 x^8+x^7+5 x^6+6 x^5+6 x^4+5 x^3+6 x^2+3 x+5$
- $y^2=22 x^8+9 x^6+19 x^5+5 x^4+4 x^3+19 x^2+12 x+11$
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
3.23.ac_cf_adg | $2$ | (not in LMFDB) |