Properties

Label 3.23.c_cf_dg
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 57 x^{2} + 84 x^{3} + 1311 x^{4} + 1058 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.400055768598$, $\pm0.520663419970$, $\pm0.649465718908$
Angle rank:  $3$ (numerical)
Number field:  6.0.3054644224.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $14680$ $181914560$ $1789005313960$ $21834171362099200$ $266641937494299141400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $640$ $12086$ $278812$ $6436506$ $148027840$ $3404885622$ $78311408892$ $1801150935578$ $41426508379200$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 108 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.3054644224.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.ac_cf_adg$2$(not in LMFDB)