-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 14680, 'abvar_counts': [14680, 181914560, 1789005313960, 21834171362099200, 266641937494299141400, 3243974486661776143832000, 39472281728816053440992303720, 480253361831585112498787503308800, 5843205446515546863768698616194247640, 71094343926793170508499011474419096612800], 'abvar_counts_str': '14680 181914560 1789005313960 21834171362099200 266641937494299141400 3243974486661776143832000 39472281728816053440992303720 480253361831585112498787503308800 5843205446515546863768698616194247640 71094343926793170508499011474419096612800 ', 'angle_corank': 0, 'angle_rank': 3, 'angles': [0.400055768597908, 0.520663419970109, 0.649465718908016], 'center_dim': 6, 'curve_count': 26, 'curve_counts': [26, 640, 12086, 278812, 6436506, 148027840, 3404885622, 78311408892, 1801150935578, 41426508379200], 'curve_counts_str': '26 640 12086 278812 6436506 148027840 3404885622 78311408892 1801150935578 41426508379200 ', 'curves': ['y^2=22*x^8+16*x^7+12*x^6+10*x^5+11*x^4+15*x^3+13*x+17', 'y^2=22*x^8+12*x^7+11*x^6+18*x^4+22*x^3+5*x^2+8*x+8', 'y^2=22*x^8+16*x^7+19*x^6+16*x^5+15*x^4+11*x^3+14*x^2+19*x+18', 'y^2=22*x^8+3*x^7+7*x^6+9*x^5+3*x^4+14*x^3+19*x^2+12*x+10', 'y^2=x^7+x^6+17*x^5+x^4+6*x^3+22*x^2+18*x+2', 'y^2=22*x^8+5*x^7+10*x^6+6*x^5+15*x^4+5*x^3+10*x^2+6*x+16', 'y^2=x^7+12*x^6+17*x^5+2*x^4+17*x^3+8*x^2+x+17', 'y^2=22*x^8+13*x^7+18*x^6+6*x^5+15*x^4+6*x^3+16*x^2+16*x+20', 'y^2=22*x^8+7*x^7+13*x^6+7*x^5+11*x^4+7*x^3+12*x^2+21', 'y^2=22*x^8+14*x^7+20*x^6+11*x^5+3*x^4+11*x^3+4*x^2+20*x+6', 'y^2=22*x^8+21*x^7+12*x^6+9*x^5+x^4+9*x^3+2*x^2+11*x+12', 'y^2=22*x^8+18*x^7+14*x^6+9*x^5+5*x^4+21*x^3+20*x^2+x+1', 'y^2=x^8+7*x^7+9*x^6+21*x^5+14*x^4+7*x^3+14*x^2+18', 'y^2=22*x^8+11*x^7+11*x^6+16*x^5+7*x^4+3*x^3+4*x^2+17*x+11', 'y^2=22*x^8+x^7+18*x^6+3*x^5+4*x^4+16*x^3+4*x^2+5*x+20', 'y^2=x^8+x^7+17*x^6+20*x^5+17*x^3+18*x^2+21*x+4', 'y^2=22*x^8+8*x^7+16*x^6+10*x^5+15*x^4+3*x^3+9*x^2+3*x+4', 'y^2=22*x^8+18*x^7+22*x^6+9*x^5+20*x^4+17*x^3+x^2+18*x+4', 'y^2=x^8+18*x^7+12*x^6+12*x^5+8*x^4+15*x^3+20*x^2+21*x+17', 'y^2=22*x^8+13*x^7+6*x^6+2*x^5+6*x^4+13*x^3+21*x^2+22*x+4', 'y^2=x^8+x^7+x^6+20*x^5+22*x^4+8*x^3+17*x^2+6*x+20', 'y^2=x^8+21*x^7+21*x^6+2*x^5+9*x^4+8*x^3+7*x^2+16*x+16', 'y^2=x^8+8*x^7+14*x^6+17*x^5+2*x^3+15*x^2+3*x+21', 'y^2=x^7+15*x^6+19*x^5+17*x^4+22*x^3+9*x^2+22*x+10', 'y^2=22*x^7+22*x^6+14*x^5+20*x^4+4*x^3+11*x^2+11*x+19', 'y^2=22*x^8+2*x^7+14*x^6+x^5+3*x^4+3*x^3+11*x^2+10*x+2', 'y^2=x^8+13*x^7+17*x^6+9*x^5+x^4+5*x^3+x+16', 'y^2=x^8+3*x^7+4*x^6+3*x^5+20*x^4+13*x^3+2*x^2+11*x+9', 'y^2=22*x^8+19*x^7+20*x^6+14*x^5+5*x^4+11*x^3+5*x^2+6*x+5', 'y^2=x^8+3*x^7+x^6+15*x^5+20*x^4+6*x^3+22*x^2+13*x+14', 'y^2=22*x^8+16*x^7+2*x^6+6*x^5+10*x^4+8*x^3+8*x^2+12*x+16', 'y^2=x^8+12*x^7+17*x^6+x^5+9*x^4+8*x^3+22*x^2+13*x+22', 'y^2=22*x^8+16*x^7+4*x^6+16*x^5+6*x^4+15*x^3+19*x^2+21*x+13', 'y^2=x^8+11*x^7+3*x^6+16*x^5+17*x^4+15*x^3+7*x^2+14*x+8', 'y^2=x^7+19*x^6+8*x^5+12*x^4+15*x^3+18*x^2+4*x+6', 'y^2=22*x^8+2*x^7+11*x^6+20*x^5+21*x^4+12*x^3+3*x^2+5*x+5', 'y^2=x^8+8*x^7+16*x^6+x^5+2*x^3+5*x^2+13*x+7', 'y^2=22*x^8+12*x^7+20*x^6+8*x^5+11*x^4+19*x^3+12*x^2+21*x+13', 'y^2=22*x^8+4*x^7+15*x^6+8*x^5+22*x^4+17*x^3+6*x^2+3*x+13', 'y^2=x^7+6*x^5+17*x^4+6*x^3+x^2+19*x+7', 'y^2=x^8+11*x^7+4*x^6+5*x^5+13*x^4+20*x^2+14*x+17', 'y^2=x^8+11*x^7+17*x^6+15*x^5+9*x^4+4*x^3+8*x^2+4*x+8', 'y^2=x^8+x^7+21*x^6+x^5+7*x^4+x^3+20*x^2+5*x+10', 'y^2=22*x^8+5*x^7+6*x^6+15*x^5+20*x^4+15*x^3+5*x^2+2*x', 'y^2=22*x^7+20*x^6+21*x^5+15*x^4+6*x^3+12*x^2+2*x+19', 'y^2=x^8+12*x^7+9*x^6+10*x^5+9*x^4+21*x^3+15*x^2+9*x+20', 'y^2=22*x^8+17*x^7+21*x^6+18*x^5+19*x^4+15*x^3+13*x^2+20*x+9', 'y^2=22*x^8+19*x^7+16*x^6+7*x^5+15*x^4+13*x^3+11*x^2+11*x+13', 'y^2=x^8+13*x^7+3*x^6+5*x^5+18*x^4+17*x^3+22*x^2+14*x+16', 'y^2=x^8+6*x^7+7*x^6+9*x^5+16*x^4+4*x^3+5*x^2+10*x+8', 'y^2=22*x^8+21*x^7+5*x^6+15*x^5+14*x^4+6*x^3+15*x^2+4*x+10', 'y^2=x^8+x^7+4*x^6+12*x^5+22*x^4+17*x^3+15*x^2+6*x+6', 'y^2=x^8+5*x^7+21*x^6+4*x^5+5*x^4+13*x^3+12*x^2+13*x+7', 'y^2=22*x^8+8*x^7+7*x^6+3*x^5+20*x^4+11*x^3+16*x^2+21*x+8', 'y^2=x^8+11*x^7+16*x^6+17*x^5+x^4+8*x^3+6*x^2+11', 'y^2=x^8+16*x^7+18*x^6+2*x^5+15*x^4+3*x^3+21*x^2+19*x+10', 'y^2=x^8+22*x^7+21*x^6+4*x^5+16*x^3+12*x^2+8*x+13', 'y^2=x^8+4*x^7+21*x^6+8*x^5+14*x^3+2*x^2+10*x+7', 'y^2=22*x^8+x^7+15*x^5+15*x^4+14*x^3+2*x^2+10', 'y^2=22*x^8+12*x^7+18*x^6+13*x^5+11*x^4+14*x^3+16*x^2+8*x+16', 'y^2=22*x^8+8*x^7+5*x^6+11*x^5+5*x^4+21*x^3+13*x^2+20*x+5', 'y^2=22*x^8+3*x^7+19*x^6+3*x^5+15*x^4+13*x^3+5*x^2+7*x+14', 'y^2=22*x^8+19*x^7+9*x^6+11*x^5+17*x^4+6*x^3+15*x^2+17*x+15', 'y^2=22*x^8+12*x^7+x^6+11*x^5+22*x^4+22*x^3+x^2+15*x+8', 'y^2=22*x^8+9*x^7+18*x^6+16*x^5+2*x^4+4*x^3+10*x^2+x+21', 'y^2=22*x^8+22*x^7+22*x^6+18*x^5+8*x^4+6*x^3+20*x^2+17*x+18', 'y^2=22*x^8+10*x^7+9*x^6+20*x^5+11*x^4+21*x^3+21*x^2+x+3', 'y^2=22*x^8+3*x^7+20*x^6+2*x^5+2*x^4+14*x^3+22*x^2+8*x+3', 'y^2=22*x^8+4*x^7+19*x^6+14*x^5+18*x^4+5*x^3+15*x^2+22*x+3', 'y^2=22*x^8+11*x^7+14*x^6+22*x^5+11*x^4+x^3+17*x^2+17*x+6', 'y^2=x^8+10*x^7+6*x^6+6*x^5+2*x^4+4*x^3+8*x^2+20*x+2', 'y^2=x^8+x^7+11*x^6+4*x^5+8*x^4+15*x^3+16*x^2+9*x+11', 'y^2=x^8+17*x^7+9*x^6+22*x^5+21*x^4+17*x^3+9*x^2+8*x+16', 'y^2=x^8+13*x^7+13*x^6+10*x^4+2*x^3+3*x^2+8*x+1', 'y^2=22*x^8+7*x^7+2*x^6+16*x^5+x^4+14*x^3+18*x^2+11', 'y^2=22*x^8+5*x^7+13*x^6+x^5+3*x^4+x^3+13*x^2+7*x+21', 'y^2=x^8+22*x^7+16*x^6+14*x^5+x^4+8*x^3+2*x^2+3*x+1', 'y^2=x^8+2*x^7+16*x^6+3*x^5+22*x^4+20*x^3+2*x^2+12*x+21', 'y^2=x^8+16*x^7+4*x^6+9*x^5+18*x^3+13*x^2+9*x+17', 'y^2=x^8+20*x^7+7*x^6+12*x^5+3*x^4+2*x^3+19*x^2+9*x+20', 'y^2=x^8+20*x^7+21*x^6+2*x^5+7*x^4+13*x^3+x^2+12*x+3', 'y^2=22*x^8+18*x^7+2*x^6+11*x^5+11*x^4+21*x^3+17*x^2+14*x+21', 'y^2=x^8+9*x^7+22*x^5+9*x^4+5*x^3+21*x^2+14*x+13', 'y^2=x^8+15*x^7+20*x^6+5*x^5+11*x^4+6*x^3+9*x^2+21*x+14', 'y^2=x^8+12*x^7+2*x^6+5*x^5+14*x^4+6*x^3+13*x^2+5*x+4', 'y^2=22*x^8+6*x^7+2*x^6+5*x^5+7*x^4+21*x^3+16*x^2+9*x+14', 'y^2=22*x^8+22*x^7+7*x^6+22*x^5+11*x^4+x^3+7*x^2+5*x+12', 'y^2=22*x^8+12*x^7+20*x^6+8*x^5+10*x^4+21*x^3+15*x^2+14*x+15', 'y^2=x^8+4*x^6+5*x^5+7*x^4+15*x^3+9*x+7', 'y^2=22*x^8+8*x^7+18*x^6+19*x^5+x^4+11*x^3+14*x^2+10*x+8', 'y^2=22*x^8+13*x^7+x^6+18*x^5+16*x^4+16*x^3+2*x^2+3*x+5', 'y^2=x^8+2*x^7+22*x^6+2*x^5+5*x^4+8*x^3+21*x+14', 'y^2=x^8+6*x^7+19*x^6+11*x^5+8*x^4+7*x^3+13*x^2+12*x+14', 'y^2=x^8+14*x^7+12*x^6+6*x^5+13*x^4+13*x^3+3*x^2+20*x+18', 'y^2=x^8+2*x^7+7*x^5+11*x^4+9*x^3+18*x^2+6*x+12', 'y^2=x^8+4*x^7+3*x^6+14*x^5+11*x^4+15*x^3+7*x^2+4*x+3', 'y^2=22*x^8+9*x^7+2*x^6+12*x^5+2*x^4+20*x^3+2*x+9', 'y^2=x^8+4*x^7+x^6+11*x^5+2*x^4+20*x^2+14*x+20', 'y^2=x^8+21*x^7+11*x^6+8*x^5+7*x^4+16*x^3+10*x^2+17*x+3', 'y^2=x^8+4*x^7+12*x^6+4*x^5+11*x^4+21*x^3+10*x+8', 'y^2=22*x^8+13*x^7+16*x^6+11*x^5+18*x^4+11*x^3+3*x^2+4*x+20', 'y^2=22*x^8+15*x^7+15*x^6+x^5+6*x^4+5*x^3+5*x^2+21*x+8', 'y^2=22*x^8+19*x^7+6*x^6+x^4+16*x^3+18*x^2+15', 'y^2=22*x^8+7*x^7+17*x^6+11*x^5+4*x^4+13*x^3+19*x^2+14*x+1', 'y^2=22*x^8+15*x^7+21*x^6+4*x^5+12*x^4+4*x^3+11*x^2+21*x+3', 'y^2=22*x^8+15*x^7+18*x^6+18*x^5+19*x^4+11*x^3+2*x^2+7*x+18', 'y^2=22*x^8+x^7+5*x^6+6*x^5+6*x^4+5*x^3+6*x^2+3*x+5', 'y^2=22*x^8+9*x^6+19*x^5+5*x^4+4*x^3+19*x^2+12*x+11'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 1, 'dim3_factors': 1, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 3, 'galois_groups': ['6T11'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 1, 'geom_dim3_factors': 1, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 6, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['6T11'], 'geometric_number_fields': ['6.0.3054644224.1'], 'geometric_splitting_field': '6.0.3054644224.1', 'geometric_splitting_polynomials': [[8716, 0, 1276, 0, 62, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 108, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'label': '3.23.c_cf_dg', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 4, 'newton_elevation': 0, 'number_fields': ['6.0.3054644224.1'], 'p': 23, 'p_rank': 3, 'p_rank_deficit': 0, 'poly': [1, 2, 57, 84, 1311, 1058, 12167], 'poly_str': '1 2 57 84 1311 1058 12167 ', 'primitive_models': [], 'q': 23, 'real_poly': [1, 2, -12, -8], 'simple_distinct': ['3.23.c_cf_dg'], 'simple_factors': ['3.23.c_cf_dgA'], 'simple_multiplicities': [1], 'slopes': ['0A', '0B', '0C', '1A', '1B', '1C'], 'splitting_field': '6.0.3054644224.1', 'splitting_polynomials': [[8716, 0, 1276, 0, 62, 0, 1]], 'twist_count': 2, 'twists': [['3.23.ac_cf_adg', '3.529.eg_iex_jgka', 2]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '3.23.c_cf_dg', 'extension_degree': 1, 'extension_label': '3.23.c_cf_dg', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '6.0.3054644224.1', 'center_dim': 6, 'divalg_dim': 1, 'extension_label': '3.23.c_cf_dg', 'galois_group': '6T11', 'places': [['14', '1', '0', '0', '0', '0'], ['18', '10', '1', '0', '0', '0'], ['9', '1', '0', '0', '0', '0'], ['18', '13', '1', '0', '0', '0']]}