# Stored data for abelian variety isogeny class 3.23.c_cf_dg, downloaded from the LMFDB on 15 September 2025. {"abvar_count": 14680, "abvar_counts": [14680, 181914560, 1789005313960, 21834171362099200, 266641937494299141400, 3243974486661776143832000, 39472281728816053440992303720, 480253361831585112498787503308800, 5843205446515546863768698616194247640, 71094343926793170508499011474419096612800], "abvar_counts_str": "14680 181914560 1789005313960 21834171362099200 266641937494299141400 3243974486661776143832000 39472281728816053440992303720 480253361831585112498787503308800 5843205446515546863768698616194247640 71094343926793170508499011474419096612800 ", "angle_corank": 0, "angle_rank": 3, "angles": [0.400055768597908, 0.520663419970109, 0.649465718908016], "center_dim": 6, "curve_count": 26, "curve_counts": [26, 640, 12086, 278812, 6436506, 148027840, 3404885622, 78311408892, 1801150935578, 41426508379200], "curve_counts_str": "26 640 12086 278812 6436506 148027840 3404885622 78311408892 1801150935578 41426508379200 ", "curves": ["y^2=22*x^8+16*x^7+12*x^6+10*x^5+11*x^4+15*x^3+13*x+17", "y^2=22*x^8+12*x^7+11*x^6+18*x^4+22*x^3+5*x^2+8*x+8", "y^2=22*x^8+16*x^7+19*x^6+16*x^5+15*x^4+11*x^3+14*x^2+19*x+18", "y^2=22*x^8+3*x^7+7*x^6+9*x^5+3*x^4+14*x^3+19*x^2+12*x+10", "y^2=x^7+x^6+17*x^5+x^4+6*x^3+22*x^2+18*x+2", "y^2=22*x^8+5*x^7+10*x^6+6*x^5+15*x^4+5*x^3+10*x^2+6*x+16", "y^2=x^7+12*x^6+17*x^5+2*x^4+17*x^3+8*x^2+x+17", "y^2=22*x^8+13*x^7+18*x^6+6*x^5+15*x^4+6*x^3+16*x^2+16*x+20", "y^2=22*x^8+7*x^7+13*x^6+7*x^5+11*x^4+7*x^3+12*x^2+21", "y^2=22*x^8+14*x^7+20*x^6+11*x^5+3*x^4+11*x^3+4*x^2+20*x+6", "y^2=22*x^8+21*x^7+12*x^6+9*x^5+x^4+9*x^3+2*x^2+11*x+12", "y^2=22*x^8+18*x^7+14*x^6+9*x^5+5*x^4+21*x^3+20*x^2+x+1", "y^2=x^8+7*x^7+9*x^6+21*x^5+14*x^4+7*x^3+14*x^2+18", "y^2=22*x^8+11*x^7+11*x^6+16*x^5+7*x^4+3*x^3+4*x^2+17*x+11", "y^2=22*x^8+x^7+18*x^6+3*x^5+4*x^4+16*x^3+4*x^2+5*x+20", "y^2=x^8+x^7+17*x^6+20*x^5+17*x^3+18*x^2+21*x+4", "y^2=22*x^8+8*x^7+16*x^6+10*x^5+15*x^4+3*x^3+9*x^2+3*x+4", "y^2=22*x^8+18*x^7+22*x^6+9*x^5+20*x^4+17*x^3+x^2+18*x+4", "y^2=x^8+18*x^7+12*x^6+12*x^5+8*x^4+15*x^3+20*x^2+21*x+17", "y^2=22*x^8+13*x^7+6*x^6+2*x^5+6*x^4+13*x^3+21*x^2+22*x+4", "y^2=x^8+x^7+x^6+20*x^5+22*x^4+8*x^3+17*x^2+6*x+20", "y^2=x^8+21*x^7+21*x^6+2*x^5+9*x^4+8*x^3+7*x^2+16*x+16", "y^2=x^8+8*x^7+14*x^6+17*x^5+2*x^3+15*x^2+3*x+21", "y^2=x^7+15*x^6+19*x^5+17*x^4+22*x^3+9*x^2+22*x+10", "y^2=22*x^7+22*x^6+14*x^5+20*x^4+4*x^3+11*x^2+11*x+19", "y^2=22*x^8+2*x^7+14*x^6+x^5+3*x^4+3*x^3+11*x^2+10*x+2", "y^2=x^8+13*x^7+17*x^6+9*x^5+x^4+5*x^3+x+16", "y^2=x^8+3*x^7+4*x^6+3*x^5+20*x^4+13*x^3+2*x^2+11*x+9", "y^2=22*x^8+19*x^7+20*x^6+14*x^5+5*x^4+11*x^3+5*x^2+6*x+5", "y^2=x^8+3*x^7+x^6+15*x^5+20*x^4+6*x^3+22*x^2+13*x+14", "y^2=22*x^8+16*x^7+2*x^6+6*x^5+10*x^4+8*x^3+8*x^2+12*x+16", "y^2=x^8+12*x^7+17*x^6+x^5+9*x^4+8*x^3+22*x^2+13*x+22", "y^2=22*x^8+16*x^7+4*x^6+16*x^5+6*x^4+15*x^3+19*x^2+21*x+13", "y^2=x^8+11*x^7+3*x^6+16*x^5+17*x^4+15*x^3+7*x^2+14*x+8", "y^2=x^7+19*x^6+8*x^5+12*x^4+15*x^3+18*x^2+4*x+6", "y^2=22*x^8+2*x^7+11*x^6+20*x^5+21*x^4+12*x^3+3*x^2+5*x+5", "y^2=x^8+8*x^7+16*x^6+x^5+2*x^3+5*x^2+13*x+7", "y^2=22*x^8+12*x^7+20*x^6+8*x^5+11*x^4+19*x^3+12*x^2+21*x+13", "y^2=22*x^8+4*x^7+15*x^6+8*x^5+22*x^4+17*x^3+6*x^2+3*x+13", "y^2=x^7+6*x^5+17*x^4+6*x^3+x^2+19*x+7", "y^2=x^8+11*x^7+4*x^6+5*x^5+13*x^4+20*x^2+14*x+17", "y^2=x^8+11*x^7+17*x^6+15*x^5+9*x^4+4*x^3+8*x^2+4*x+8", "y^2=x^8+x^7+21*x^6+x^5+7*x^4+x^3+20*x^2+5*x+10", "y^2=22*x^8+5*x^7+6*x^6+15*x^5+20*x^4+15*x^3+5*x^2+2*x", "y^2=22*x^7+20*x^6+21*x^5+15*x^4+6*x^3+12*x^2+2*x+19", "y^2=x^8+12*x^7+9*x^6+10*x^5+9*x^4+21*x^3+15*x^2+9*x+20", "y^2=22*x^8+17*x^7+21*x^6+18*x^5+19*x^4+15*x^3+13*x^2+20*x+9", "y^2=22*x^8+19*x^7+16*x^6+7*x^5+15*x^4+13*x^3+11*x^2+11*x+13", "y^2=x^8+13*x^7+3*x^6+5*x^5+18*x^4+17*x^3+22*x^2+14*x+16", "y^2=x^8+6*x^7+7*x^6+9*x^5+16*x^4+4*x^3+5*x^2+10*x+8", "y^2=22*x^8+21*x^7+5*x^6+15*x^5+14*x^4+6*x^3+15*x^2+4*x+10", "y^2=x^8+x^7+4*x^6+12*x^5+22*x^4+17*x^3+15*x^2+6*x+6", "y^2=x^8+5*x^7+21*x^6+4*x^5+5*x^4+13*x^3+12*x^2+13*x+7", "y^2=22*x^8+8*x^7+7*x^6+3*x^5+20*x^4+11*x^3+16*x^2+21*x+8", "y^2=x^8+11*x^7+16*x^6+17*x^5+x^4+8*x^3+6*x^2+11", "y^2=x^8+16*x^7+18*x^6+2*x^5+15*x^4+3*x^3+21*x^2+19*x+10", "y^2=x^8+22*x^7+21*x^6+4*x^5+16*x^3+12*x^2+8*x+13", "y^2=x^8+4*x^7+21*x^6+8*x^5+14*x^3+2*x^2+10*x+7", "y^2=22*x^8+x^7+15*x^5+15*x^4+14*x^3+2*x^2+10", "y^2=22*x^8+12*x^7+18*x^6+13*x^5+11*x^4+14*x^3+16*x^2+8*x+16", "y^2=22*x^8+8*x^7+5*x^6+11*x^5+5*x^4+21*x^3+13*x^2+20*x+5", "y^2=22*x^8+3*x^7+19*x^6+3*x^5+15*x^4+13*x^3+5*x^2+7*x+14", "y^2=22*x^8+19*x^7+9*x^6+11*x^5+17*x^4+6*x^3+15*x^2+17*x+15", "y^2=22*x^8+12*x^7+x^6+11*x^5+22*x^4+22*x^3+x^2+15*x+8", "y^2=22*x^8+9*x^7+18*x^6+16*x^5+2*x^4+4*x^3+10*x^2+x+21", "y^2=22*x^8+22*x^7+22*x^6+18*x^5+8*x^4+6*x^3+20*x^2+17*x+18", "y^2=22*x^8+10*x^7+9*x^6+20*x^5+11*x^4+21*x^3+21*x^2+x+3", "y^2=22*x^8+3*x^7+20*x^6+2*x^5+2*x^4+14*x^3+22*x^2+8*x+3", "y^2=22*x^8+4*x^7+19*x^6+14*x^5+18*x^4+5*x^3+15*x^2+22*x+3", "y^2=22*x^8+11*x^7+14*x^6+22*x^5+11*x^4+x^3+17*x^2+17*x+6", "y^2=x^8+10*x^7+6*x^6+6*x^5+2*x^4+4*x^3+8*x^2+20*x+2", "y^2=x^8+x^7+11*x^6+4*x^5+8*x^4+15*x^3+16*x^2+9*x+11", "y^2=x^8+17*x^7+9*x^6+22*x^5+21*x^4+17*x^3+9*x^2+8*x+16", "y^2=x^8+13*x^7+13*x^6+10*x^4+2*x^3+3*x^2+8*x+1", "y^2=22*x^8+7*x^7+2*x^6+16*x^5+x^4+14*x^3+18*x^2+11", "y^2=22*x^8+5*x^7+13*x^6+x^5+3*x^4+x^3+13*x^2+7*x+21", "y^2=x^8+22*x^7+16*x^6+14*x^5+x^4+8*x^3+2*x^2+3*x+1", "y^2=x^8+2*x^7+16*x^6+3*x^5+22*x^4+20*x^3+2*x^2+12*x+21", "y^2=x^8+16*x^7+4*x^6+9*x^5+18*x^3+13*x^2+9*x+17", "y^2=x^8+20*x^7+7*x^6+12*x^5+3*x^4+2*x^3+19*x^2+9*x+20", "y^2=x^8+20*x^7+21*x^6+2*x^5+7*x^4+13*x^3+x^2+12*x+3", "y^2=22*x^8+18*x^7+2*x^6+11*x^5+11*x^4+21*x^3+17*x^2+14*x+21", "y^2=x^8+9*x^7+22*x^5+9*x^4+5*x^3+21*x^2+14*x+13", "y^2=x^8+15*x^7+20*x^6+5*x^5+11*x^4+6*x^3+9*x^2+21*x+14", "y^2=x^8+12*x^7+2*x^6+5*x^5+14*x^4+6*x^3+13*x^2+5*x+4", "y^2=22*x^8+6*x^7+2*x^6+5*x^5+7*x^4+21*x^3+16*x^2+9*x+14", "y^2=22*x^8+22*x^7+7*x^6+22*x^5+11*x^4+x^3+7*x^2+5*x+12", "y^2=22*x^8+12*x^7+20*x^6+8*x^5+10*x^4+21*x^3+15*x^2+14*x+15", "y^2=x^8+4*x^6+5*x^5+7*x^4+15*x^3+9*x+7", "y^2=22*x^8+8*x^7+18*x^6+19*x^5+x^4+11*x^3+14*x^2+10*x+8", "y^2=22*x^8+13*x^7+x^6+18*x^5+16*x^4+16*x^3+2*x^2+3*x+5", "y^2=x^8+2*x^7+22*x^6+2*x^5+5*x^4+8*x^3+21*x+14", "y^2=x^8+6*x^7+19*x^6+11*x^5+8*x^4+7*x^3+13*x^2+12*x+14", "y^2=x^8+14*x^7+12*x^6+6*x^5+13*x^4+13*x^3+3*x^2+20*x+18", "y^2=x^8+2*x^7+7*x^5+11*x^4+9*x^3+18*x^2+6*x+12", "y^2=x^8+4*x^7+3*x^6+14*x^5+11*x^4+15*x^3+7*x^2+4*x+3", "y^2=22*x^8+9*x^7+2*x^6+12*x^5+2*x^4+20*x^3+2*x+9", "y^2=x^8+4*x^7+x^6+11*x^5+2*x^4+20*x^2+14*x+20", "y^2=x^8+21*x^7+11*x^6+8*x^5+7*x^4+16*x^3+10*x^2+17*x+3", "y^2=x^8+4*x^7+12*x^6+4*x^5+11*x^4+21*x^3+10*x+8", "y^2=22*x^8+13*x^7+16*x^6+11*x^5+18*x^4+11*x^3+3*x^2+4*x+20", "y^2=22*x^8+15*x^7+15*x^6+x^5+6*x^4+5*x^3+5*x^2+21*x+8", "y^2=22*x^8+19*x^7+6*x^6+x^4+16*x^3+18*x^2+15", "y^2=22*x^8+7*x^7+17*x^6+11*x^5+4*x^4+13*x^3+19*x^2+14*x+1", "y^2=22*x^8+15*x^7+21*x^6+4*x^5+12*x^4+4*x^3+11*x^2+21*x+3", "y^2=22*x^8+15*x^7+18*x^6+18*x^5+19*x^4+11*x^3+2*x^2+7*x+18", "y^2=22*x^8+x^7+5*x^6+6*x^5+6*x^4+5*x^3+6*x^2+3*x+5", "y^2=22*x^8+9*x^6+19*x^5+5*x^4+4*x^3+19*x^2+12*x+11"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 1, "dim3_factors": 1, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 3, "galois_groups": ["6T11"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 1, "geom_dim3_factors": 1, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 6, "geometric_extension_degree": 1, "geometric_galois_groups": ["6T11"], "geometric_number_fields": ["6.0.3054644224.1"], "geometric_splitting_field": "6.0.3054644224.1", "geometric_splitting_polynomials": [[8716, 0, 1276, 0, 62, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 108, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "label": "3.23.c_cf_dg", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 4, "newton_elevation": 0, "number_fields": ["6.0.3054644224.1"], "p": 23, "p_rank": 3, "p_rank_deficit": 0, "poly": [1, 2, 57, 84, 1311, 1058, 12167], "poly_str": "1 2 57 84 1311 1058 12167 ", "primitive_models": [], "q": 23, "real_poly": [1, 2, -12, -8], "simple_distinct": ["3.23.c_cf_dg"], "simple_factors": ["3.23.c_cf_dgA"], "simple_multiplicities": [1], "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "6.0.3054644224.1", "splitting_polynomials": [[8716, 0, 1276, 0, 62, 0, 1]], "twist_count": 2, "twists": [["3.23.ac_cf_adg", "3.529.eg_iex_jgka", 2]]}