# Curves in abelian variety isogeny class 3.23.c_cf_dg, downloaded from the LMFDB on 17 September 2025. y^2=22*x^8+16*x^7+12*x^6+10*x^5+11*x^4+15*x^3+13*x+17 y^2=22*x^8+12*x^7+11*x^6+18*x^4+22*x^3+5*x^2+8*x+8 y^2=22*x^8+16*x^7+19*x^6+16*x^5+15*x^4+11*x^3+14*x^2+19*x+18 y^2=22*x^8+3*x^7+7*x^6+9*x^5+3*x^4+14*x^3+19*x^2+12*x+10 y^2=x^7+x^6+17*x^5+x^4+6*x^3+22*x^2+18*x+2 y^2=22*x^8+5*x^7+10*x^6+6*x^5+15*x^4+5*x^3+10*x^2+6*x+16 y^2=x^7+12*x^6+17*x^5+2*x^4+17*x^3+8*x^2+x+17 y^2=22*x^8+13*x^7+18*x^6+6*x^5+15*x^4+6*x^3+16*x^2+16*x+20 y^2=22*x^8+7*x^7+13*x^6+7*x^5+11*x^4+7*x^3+12*x^2+21 y^2=22*x^8+14*x^7+20*x^6+11*x^5+3*x^4+11*x^3+4*x^2+20*x+6 y^2=22*x^8+21*x^7+12*x^6+9*x^5+x^4+9*x^3+2*x^2+11*x+12 y^2=22*x^8+18*x^7+14*x^6+9*x^5+5*x^4+21*x^3+20*x^2+x+1 y^2=x^8+7*x^7+9*x^6+21*x^5+14*x^4+7*x^3+14*x^2+18 y^2=22*x^8+11*x^7+11*x^6+16*x^5+7*x^4+3*x^3+4*x^2+17*x+11 y^2=22*x^8+x^7+18*x^6+3*x^5+4*x^4+16*x^3+4*x^2+5*x+20 y^2=x^8+x^7+17*x^6+20*x^5+17*x^3+18*x^2+21*x+4 y^2=22*x^8+8*x^7+16*x^6+10*x^5+15*x^4+3*x^3+9*x^2+3*x+4 y^2=22*x^8+18*x^7+22*x^6+9*x^5+20*x^4+17*x^3+x^2+18*x+4 y^2=x^8+18*x^7+12*x^6+12*x^5+8*x^4+15*x^3+20*x^2+21*x+17 y^2=22*x^8+13*x^7+6*x^6+2*x^5+6*x^4+13*x^3+21*x^2+22*x+4 y^2=x^8+x^7+x^6+20*x^5+22*x^4+8*x^3+17*x^2+6*x+20 y^2=x^8+21*x^7+21*x^6+2*x^5+9*x^4+8*x^3+7*x^2+16*x+16 y^2=x^8+8*x^7+14*x^6+17*x^5+2*x^3+15*x^2+3*x+21 y^2=x^7+15*x^6+19*x^5+17*x^4+22*x^3+9*x^2+22*x+10 y^2=22*x^7+22*x^6+14*x^5+20*x^4+4*x^3+11*x^2+11*x+19 y^2=22*x^8+2*x^7+14*x^6+x^5+3*x^4+3*x^3+11*x^2+10*x+2 y^2=x^8+13*x^7+17*x^6+9*x^5+x^4+5*x^3+x+16 y^2=x^8+3*x^7+4*x^6+3*x^5+20*x^4+13*x^3+2*x^2+11*x+9 y^2=22*x^8+19*x^7+20*x^6+14*x^5+5*x^4+11*x^3+5*x^2+6*x+5 y^2=x^8+3*x^7+x^6+15*x^5+20*x^4+6*x^3+22*x^2+13*x+14 y^2=22*x^8+16*x^7+2*x^6+6*x^5+10*x^4+8*x^3+8*x^2+12*x+16 y^2=x^8+12*x^7+17*x^6+x^5+9*x^4+8*x^3+22*x^2+13*x+22 y^2=22*x^8+16*x^7+4*x^6+16*x^5+6*x^4+15*x^3+19*x^2+21*x+13 y^2=x^8+11*x^7+3*x^6+16*x^5+17*x^4+15*x^3+7*x^2+14*x+8 y^2=x^7+19*x^6+8*x^5+12*x^4+15*x^3+18*x^2+4*x+6 y^2=22*x^8+2*x^7+11*x^6+20*x^5+21*x^4+12*x^3+3*x^2+5*x+5 y^2=x^8+8*x^7+16*x^6+x^5+2*x^3+5*x^2+13*x+7 y^2=22*x^8+12*x^7+20*x^6+8*x^5+11*x^4+19*x^3+12*x^2+21*x+13 y^2=22*x^8+4*x^7+15*x^6+8*x^5+22*x^4+17*x^3+6*x^2+3*x+13 y^2=x^7+6*x^5+17*x^4+6*x^3+x^2+19*x+7 y^2=x^8+11*x^7+4*x^6+5*x^5+13*x^4+20*x^2+14*x+17 y^2=x^8+11*x^7+17*x^6+15*x^5+9*x^4+4*x^3+8*x^2+4*x+8 y^2=x^8+x^7+21*x^6+x^5+7*x^4+x^3+20*x^2+5*x+10 y^2=22*x^8+5*x^7+6*x^6+15*x^5+20*x^4+15*x^3+5*x^2+2*x y^2=22*x^7+20*x^6+21*x^5+15*x^4+6*x^3+12*x^2+2*x+19 y^2=x^8+12*x^7+9*x^6+10*x^5+9*x^4+21*x^3+15*x^2+9*x+20 y^2=22*x^8+17*x^7+21*x^6+18*x^5+19*x^4+15*x^3+13*x^2+20*x+9 y^2=22*x^8+19*x^7+16*x^6+7*x^5+15*x^4+13*x^3+11*x^2+11*x+13 y^2=x^8+13*x^7+3*x^6+5*x^5+18*x^4+17*x^3+22*x^2+14*x+16 y^2=x^8+6*x^7+7*x^6+9*x^5+16*x^4+4*x^3+5*x^2+10*x+8 y^2=22*x^8+21*x^7+5*x^6+15*x^5+14*x^4+6*x^3+15*x^2+4*x+10 y^2=x^8+x^7+4*x^6+12*x^5+22*x^4+17*x^3+15*x^2+6*x+6 y^2=x^8+5*x^7+21*x^6+4*x^5+5*x^4+13*x^3+12*x^2+13*x+7 y^2=22*x^8+8*x^7+7*x^6+3*x^5+20*x^4+11*x^3+16*x^2+21*x+8 y^2=x^8+11*x^7+16*x^6+17*x^5+x^4+8*x^3+6*x^2+11 y^2=x^8+16*x^7+18*x^6+2*x^5+15*x^4+3*x^3+21*x^2+19*x+10 y^2=x^8+22*x^7+21*x^6+4*x^5+16*x^3+12*x^2+8*x+13 y^2=x^8+4*x^7+21*x^6+8*x^5+14*x^3+2*x^2+10*x+7 y^2=22*x^8+x^7+15*x^5+15*x^4+14*x^3+2*x^2+10 y^2=22*x^8+12*x^7+18*x^6+13*x^5+11*x^4+14*x^3+16*x^2+8*x+16 y^2=22*x^8+8*x^7+5*x^6+11*x^5+5*x^4+21*x^3+13*x^2+20*x+5 y^2=22*x^8+3*x^7+19*x^6+3*x^5+15*x^4+13*x^3+5*x^2+7*x+14 y^2=22*x^8+19*x^7+9*x^6+11*x^5+17*x^4+6*x^3+15*x^2+17*x+15 y^2=22*x^8+12*x^7+x^6+11*x^5+22*x^4+22*x^3+x^2+15*x+8 y^2=22*x^8+9*x^7+18*x^6+16*x^5+2*x^4+4*x^3+10*x^2+x+21 y^2=22*x^8+22*x^7+22*x^6+18*x^5+8*x^4+6*x^3+20*x^2+17*x+18 y^2=22*x^8+10*x^7+9*x^6+20*x^5+11*x^4+21*x^3+21*x^2+x+3 y^2=22*x^8+3*x^7+20*x^6+2*x^5+2*x^4+14*x^3+22*x^2+8*x+3 y^2=22*x^8+4*x^7+19*x^6+14*x^5+18*x^4+5*x^3+15*x^2+22*x+3 y^2=22*x^8+11*x^7+14*x^6+22*x^5+11*x^4+x^3+17*x^2+17*x+6 y^2=x^8+10*x^7+6*x^6+6*x^5+2*x^4+4*x^3+8*x^2+20*x+2 y^2=x^8+x^7+11*x^6+4*x^5+8*x^4+15*x^3+16*x^2+9*x+11 y^2=x^8+17*x^7+9*x^6+22*x^5+21*x^4+17*x^3+9*x^2+8*x+16 y^2=x^8+13*x^7+13*x^6+10*x^4+2*x^3+3*x^2+8*x+1 y^2=22*x^8+7*x^7+2*x^6+16*x^5+x^4+14*x^3+18*x^2+11 y^2=22*x^8+5*x^7+13*x^6+x^5+3*x^4+x^3+13*x^2+7*x+21 y^2=x^8+22*x^7+16*x^6+14*x^5+x^4+8*x^3+2*x^2+3*x+1 y^2=x^8+2*x^7+16*x^6+3*x^5+22*x^4+20*x^3+2*x^2+12*x+21 y^2=x^8+16*x^7+4*x^6+9*x^5+18*x^3+13*x^2+9*x+17 y^2=x^8+20*x^7+7*x^6+12*x^5+3*x^4+2*x^3+19*x^2+9*x+20 y^2=x^8+20*x^7+21*x^6+2*x^5+7*x^4+13*x^3+x^2+12*x+3 y^2=22*x^8+18*x^7+2*x^6+11*x^5+11*x^4+21*x^3+17*x^2+14*x+21 y^2=x^8+9*x^7+22*x^5+9*x^4+5*x^3+21*x^2+14*x+13 y^2=x^8+15*x^7+20*x^6+5*x^5+11*x^4+6*x^3+9*x^2+21*x+14 y^2=x^8+12*x^7+2*x^6+5*x^5+14*x^4+6*x^3+13*x^2+5*x+4 y^2=22*x^8+6*x^7+2*x^6+5*x^5+7*x^4+21*x^3+16*x^2+9*x+14 y^2=22*x^8+22*x^7+7*x^6+22*x^5+11*x^4+x^3+7*x^2+5*x+12 y^2=22*x^8+12*x^7+20*x^6+8*x^5+10*x^4+21*x^3+15*x^2+14*x+15 y^2=x^8+4*x^6+5*x^5+7*x^4+15*x^3+9*x+7 y^2=22*x^8+8*x^7+18*x^6+19*x^5+x^4+11*x^3+14*x^2+10*x+8 y^2=22*x^8+13*x^7+x^6+18*x^5+16*x^4+16*x^3+2*x^2+3*x+5 y^2=x^8+2*x^7+22*x^6+2*x^5+5*x^4+8*x^3+21*x+14 y^2=x^8+6*x^7+19*x^6+11*x^5+8*x^4+7*x^3+13*x^2+12*x+14 y^2=x^8+14*x^7+12*x^6+6*x^5+13*x^4+13*x^3+3*x^2+20*x+18 y^2=x^8+2*x^7+7*x^5+11*x^4+9*x^3+18*x^2+6*x+12 y^2=x^8+4*x^7+3*x^6+14*x^5+11*x^4+15*x^3+7*x^2+4*x+3 y^2=22*x^8+9*x^7+2*x^6+12*x^5+2*x^4+20*x^3+2*x+9 y^2=x^8+4*x^7+x^6+11*x^5+2*x^4+20*x^2+14*x+20 y^2=x^8+21*x^7+11*x^6+8*x^5+7*x^4+16*x^3+10*x^2+17*x+3 y^2=x^8+4*x^7+12*x^6+4*x^5+11*x^4+21*x^3+10*x+8 y^2=22*x^8+13*x^7+16*x^6+11*x^5+18*x^4+11*x^3+3*x^2+4*x+20 y^2=22*x^8+15*x^7+15*x^6+x^5+6*x^4+5*x^3+5*x^2+21*x+8 y^2=22*x^8+19*x^7+6*x^6+x^4+16*x^3+18*x^2+15 y^2=22*x^8+7*x^7+17*x^6+11*x^5+4*x^4+13*x^3+19*x^2+14*x+1 y^2=22*x^8+15*x^7+21*x^6+4*x^5+12*x^4+4*x^3+11*x^2+21*x+3 y^2=22*x^8+15*x^7+18*x^6+18*x^5+19*x^4+11*x^3+2*x^2+7*x+18 y^2=22*x^8+x^7+5*x^6+6*x^5+6*x^4+5*x^3+6*x^2+3*x+5 y^2=22*x^8+9*x^6+19*x^5+5*x^4+4*x^3+19*x^2+12*x+11