Learn more

Refine search


Results (1-50 of 108 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
10.2.125000000000000000.6 $x^{10} - 30 x^{5} + 25$ $2^{15}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $82564.8412283$
10.4.500000000000000000.2 $x^{10} - 100 x^{6} - 140 x^{5} - 625 x^{2} - 500 x - 100$ $-\,2^{17}\cdot 5^{18}$ $S_{10}$ (as 10T45) trivial $753999.034354$
10.2.949218750000000000.2 $x^{10} - 20 x^{5} + 25$ $2^{10}\cdot 3^{5}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) $[2]$ $107224.766762$
10.0.120...000.6 $x^{10} - 25 x^{7} + 75 x^{6} + 75 x^{5} + 4375 x^{4} - 9375 x^{3} + 3000 x^{2} + 4500 x + 1575$ $-\,2^{4}\cdot 3^{9}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $636404.437222$
10.2.854...000.7 $x^{10} - 5 x^{9} - 30 x^{8} + 150 x^{7} + 255 x^{6} - 1251 x^{5} - 240 x^{4} + 2250 x^{3} - 4740 x^{2} + 520 x - 3248$ $2^{10}\cdot 3^{7}\cdot 5^{18}$ $S_{10}$ (as 10T45) trivial $11069256.8533$
10.0.108...000.4 $x^{10} - 25 x^{8} + 625 x^{6} - 420 x^{5} - 11250 x^{4} - 8250 x^{3} + 67500 x^{2} + 162000 x + 141300$ $-\,2^{4}\cdot 3^{11}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $2812704.69139$
10.0.180...000.32 $x^{10} - 200 x^{6} - 80 x^{5} + 1250 x^{4} - 2500 x^{3} + 28250 x^{2} - 9000 x + 59400$ $-\,2^{19}\cdot 3^{2}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $3610154.49166$
10.6.320...000.11 $x^{10} - 50 x^{8} + 875 x^{6} - 100 x^{5} - 6250 x^{4} + 2500 x^{3} + 15625 x^{2} - 12500 x - 2500$ $2^{23}\cdot 5^{18}$ $(D_5 \wr C_2):C_2$ (as 10T27) trivial $2919365.38818$
10.0.405...000.37 $x^{10} - 50 x^{8} + 625 x^{6} - 400 x^{5} + 10000 x^{3} + 60000$ $-\,2^{17}\cdot 3^{4}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $9998877.09284$
10.0.405...000.44 $x^{10} + 50 x^{8} - 150 x^{7} + 725 x^{6} - 4440 x^{5} + 8125 x^{4} - 24750 x^{3} + 74250 x^{2} - 130500 x + 234225$ $-\,2^{17}\cdot 3^{4}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $2918061.90553$
10.0.768...000.90 $x^{10} + 50 x^{8} - 100 x^{7} + 1075 x^{6} - 2900 x^{5} + 13750 x^{4} - 32500 x^{3} + 87500 x^{2} - 171000 x + 137200$ $-\,2^{10}\cdot 3^{9}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $4433441.52491$
10.0.768...000.96 $x^{10} - 75 x^{8} + 1875 x^{6} - 450 x^{5} + 202500$ $-\,2^{10}\cdot 3^{9}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $7321910.75029$
10.2.768...000.49 $x^{10} - 6750 x - 6075$ $2^{10}\cdot 3^{9}\cdot 5^{18}$ $S_{10}$ (as 10T45) trivial $4374170.6999$
10.2.136...000.41 $x^{10} - 15 x^{8} + 90 x^{6} - 840 x^{5} + 1530 x^{4} - 3600 x^{3} + 7605 x^{2} - 1800 x + 20277$ $2^{14}\cdot 3^{7}\cdot 5^{18}$ $S_{10}$ (as 10T45) trivial $6493755.58396$
10.0.162...000.12 $x^{10} - 40 x^{5} + 600$ $-\,2^{19}\cdot 3^{4}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $3591802.56506$
10.2.162...000.100 $x^{10} + 50 x^{8} + 875 x^{6} - 520 x^{5} + 6250 x^{4} - 13000 x^{3} + 15625 x^{2} - 65000 x - 20600$ $2^{19}\cdot 3^{4}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $4857415.68517165$
10.0.172...000.16 $x^{10} - 25 x^{8} - 100 x^{7} + 1150 x^{6} + 130 x^{5} - 6875 x^{4} + 7250 x^{3} + 129125 x^{2} - 352500 x + 516400$ $-\,2^{8}\cdot 3^{11}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $6709466.38015$
10.2.243...000.62 $x^{10} - 50 x^{8} + 875 x^{6} - 800 x^{5} - 6250 x^{4} + 20000 x^{3} + 15625 x^{2} - 100000 x + 92500$ $2^{18}\cdot 3^{5}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) $[2]$ $2329741.47915$
10.0.389...000.19 $x^{10} - 75 x^{8} - 100 x^{7} + 2850 x^{6} - 615 x^{5} - 20000 x^{4} - 54000 x^{3} + 28125 x^{2} + 538875 x + 733575$ $-\,2^{6}\cdot 3^{13}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $8977145.44559$
10.0.432...000.17 $x^{10} - 100 x^{7} - 50 x^{6} + 420 x^{5} + 2500 x^{4} + 2500 x^{3} - 375 x^{2} + 13500 x + 51300$ $-\,2^{22}\cdot 3^{3}\cdot 5^{18}$ $S_5^2 \wr C_2$ (as 10T43) trivial $28681793.1304$
10.6.512...000.2 $x^{10} - 100 x^{8} + 3250 x^{6} - 640 x^{5} - 37500 x^{4} + 32000 x^{3} + 129375 x^{2} - 129000 x - 171400$ $2^{27}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $14533027.287582077$
10.6.691...000.1 $x^{10} - 50 x^{8} + 625 x^{6} - 450 x^{5} + 11250 x^{3} - 16875$ $2^{10}\cdot 3^{11}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $19938970.0459$
10.0.820...000.35 $x^{10} - 90 x^{5} + 6075$ $-\,2^{15}\cdot 3^{8}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $5954771.24335$
10.0.820...000.94 $x^{10} - 100 x^{7} + 450 x^{6} + 690 x^{5} + 2500 x^{4} - 22500 x^{3} + 27375 x^{2} + 65250 x + 299025$ $-\,2^{15}\cdot 3^{8}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $21029009.8103$
10.0.115...000.12 $x^{10} + 750 x^{6} - 10000 x^{3} + 62500 x^{2} + 20000$ $-\,2^{25}\cdot 3^{2}\cdot 5^{18}$ $(D_5 \wr C_2):C_2$ (as 10T27) trivial $9759547.3046$
10.2.123...000.127 $x^{10} - 150 x^{5} - 450$ $2^{14}\cdot 3^{9}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $6436084.56975$
10.2.123...000.131 $x^{10} - 180 x^{5} + 600$ $2^{14}\cdot 3^{9}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $13127614.1504$
10.2.123...000.194 $x^{10} - 360 x^{5} + 8100$ $2^{14}\cdot 3^{9}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $6981425.97885$
10.2.123...000.198 $x^{10} - 300 x^{5} + 15000$ $2^{14}\cdot 3^{9}\cdot 5^{18}$ $(C_5^2 : C_4) : C_2$ (as 10T17) trivial $11423095.7903$
10.0.145...000.79 $x^{10} - 50 x^{8} - 100 x^{7} + 625 x^{6} + 3020 x^{5} + 7500 x^{4} + 17000 x^{3} + 18000 x^{2} - 3000 x + 67650$ $-\,2^{19}\cdot 3^{6}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $68904996.1066$
10.0.145...000.86 $x^{10} - 50 x^{8} - 300 x^{7} - 125 x^{6} + 7020 x^{5} + 41250 x^{4} + 124500 x^{3} + 223875 x^{2} + 211500 x + 79650$ $-\,2^{19}\cdot 3^{6}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $90689457.6672$
10.0.145...000.110 $x^{10} - 300 x^{7} - 150 x^{6} + 900 x^{5} + 23750 x^{4} - 22500 x^{3} + 292125 x^{2} - 364500 x + 256950$ $-\,2^{19}\cdot 3^{6}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) $[2]$ $21110544.1592$
10.0.155...000.16 $x^{10} - 150 x^{7} + 225 x^{6} - 90 x^{5} + 7500 x^{4} - 11250 x^{3} + 16875 x^{2} - 20250 x + 8100$ $-\,2^{8}\cdot 3^{13}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $37172084.844$
10.0.155...000.38 $x^{10} - 50 x^{7} - 150 x^{6} + 150 x^{5} + 17500 x^{4} + 71250 x^{3} + 197625 x^{2} + 245250 x + 249300$ $-\,2^{8}\cdot 3^{13}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $17814644.7218$
10.0.155...000.44 $x^{10} - 100 x^{7} - 300 x^{6} + 360 x^{5} + 10000 x^{4} - 30000 x^{3} - 54000 x^{2} + 324000 x + 561600$ $-\,2^{8}\cdot 3^{13}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $30988961.4749$
10.0.204...000.6 $x^{10} - 100 x^{8} + 2850 x^{6} - 80 x^{5} - 12500 x^{4} - 1000 x^{3} + 33875 x^{2} - 15000 x + 1800$ $-\,2^{29}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $25253888.85275605$
10.6.204...000.5 $x^{10} - 100 x^{8} - 200 x^{7} + 2850 x^{6} + 12200 x^{5} - 12500 x^{4} - 190000 x^{3} - 448625 x^{2} - 326000 x - 38200$ $2^{29}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $38233520.14786721$
10.2.204...000.26 $x^{10} - 100 x^{8} - 200 x^{7} + 4550 x^{6} + 18920 x^{5} - 92500 x^{4} - 651000 x^{3} + 78625 x^{2} + 7927000 x + 15270800$ $2^{29}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $14492543.076974966$
10.0.259...000.31 $x^{10} - 100 x^{6} + 22500 x^{2} - 72000 x + 64800$ $-\,2^{23}\cdot 3^{4}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $41279150.9298$
10.0.276...000.47 $x^{10} - 200 x^{7} + 300 x^{6} + 17500 x^{4} - 52500 x^{3} - 41625 x^{2} + 121500 x + 218700$ $-\,2^{12}\cdot 3^{11}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $63903394.9509$
10.0.276...000.62 $x^{10} - 100 x^{7} + 150 x^{6} + 660 x^{5} + 10000 x^{4} - 30000 x^{3} - 127500 x^{2} + 225000 x + 565200$ $-\,2^{12}\cdot 3^{11}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $35823512.2476$
10.2.328...000.4 $x^{10} - 200 x^{7} - 1350 x^{6} - 2160 x^{5} - 21250 x^{4} + 22500 x^{3} - 44625 x^{2} + 351000 x - 1859400$ $2^{17}\cdot 3^{8}\cdot 5^{18}$ $(A_5^2 : C_2):C_2$ (as 10T41) trivial $69420217.7651$
10.0.388...000.33 $x^{10} + 400 x^{6} - 240 x^{5} - 3000 x^{3} + 10375 x^{2} + 3000 x + 11700$ $-\,2^{22}\cdot 3^{5}\cdot 5^{18}$ $S_{10}$ (as 10T45) $[2]$ $33920888.4858$
10.0.388...000.76 $x^{10} - 100 x^{7} - 300 x^{6} + 1080 x^{5} + 7500 x^{4} - 45000 x^{3} + 58500 x^{2} + 378000 x + 696600$ $-\,2^{22}\cdot 3^{5}\cdot 5^{18}$ $S_5^2 \wr C_2$ (as 10T43) trivial $279210594.529$
10.2.627...000.2 $x^{10} - 50 x^{8} + 125 x^{6} - 2220 x^{5} + 6250 x^{4} - 20500 x^{3} + 15625 x^{2} - 72500 x + 76900$ $2^{25}\cdot 5^{18}\cdot 7^{2}$ $(D_5 \wr C_2):C_2$ (as 10T27) trivial $19258085.5213$
10.4.819...000.30 $x^{10} + 100 x^{8} - 200 x^{7} + 2400 x^{6} - 10640 x^{5} + 5000 x^{4} - 22000 x^{3} - 144750 x^{2} + 32000 x + 102400$ $-\,2^{31}\cdot 5^{18}$ $S_5^2 \wr C_2$ (as 10T43) trivial $44278565.206738956$
10.2.874...000.65 $x^{10} + 50 x^{8} + 875 x^{6} - 1720 x^{5} + 6250 x^{4} - 43000 x^{3} + 15625 x^{2} - 215000 x - 103100$ $2^{20}\cdot 3^{7}\cdot 5^{18}$ $(D_5 \wr C_2):C_2$ (as 10T27) trivial $30649897.3953$
10.2.874...000.130 $x^{10} + 50 x^{8} + 875 x^{6} - 400 x^{5} + 6250 x^{4} - 10000 x^{3} + 15625 x^{2} - 50000 x + 32500$ $2^{20}\cdot 3^{7}\cdot 5^{18}$ $(D_5 \wr C_2):C_2$ (as 10T27) trivial $29943582.8504$
10.0.124...375.4 $x^{10} + 2625 x^{6} - 2275 x^{5} + 30625 x^{3} + 765625 x^{2} + 1990625 x + 1347500$ $-\,3^{4}\cdot 5^{18}\cdot 7^{9}$ $(C_5^2 : C_4) : C_2$ (as 10T17) $[2]$ $20695090.898274314$
10.4.131...000.21 $x^{10} - 50 x^{7} + 300 x^{5} - 625 x^{4} + 3000 x^{2} + 450$ $-\,2^{19}\cdot 3^{8}\cdot 5^{18}$ $S_5^2 \wr C_2$ (as 10T43) trivial $107277081.975$
Next   displayed columns for results