Normalized defining polynomial
\( x^{10} - 50x^{7} + 300x^{5} - 625x^{4} + 3000x^{2} + 450 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[4, 3]$ |
| |
| Discriminant: |
\(-13122000000000000000000\)
\(\medspace = -\,2^{19}\cdot 3^{8}\cdot 5^{18}\)
|
| |
| Root discriminant: | \(162.85\) |
| |
| Galois root discriminant: | $2^{11/4}3^{25/18}5^{203/100}\approx 811.727026765957$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}$, $\frac{1}{5}a^{6}$, $\frac{1}{5}a^{7}$, $\frac{1}{45}a^{8}-\frac{1}{15}a^{6}+\frac{4}{45}a^{5}+\frac{1}{9}a^{2}+\frac{1}{3}$, $\frac{1}{8726760}a^{9}-\frac{26951}{2908920}a^{8}-\frac{99733}{2908920}a^{7}+\frac{79711}{1246680}a^{6}-\frac{2437}{83112}a^{5}+\frac{83113}{193928}a^{4}+\frac{259439}{872676}a^{3}+\frac{30515}{290892}a^{2}-\frac{77179}{290892}a-\frac{20499}{96964}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{245}{249336}a^{9}-\frac{625}{249336}a^{8}+\frac{343}{83112}a^{7}-\frac{14875}{249336}a^{6}+\frac{177859}{1246680}a^{5}+\frac{1225}{27704}a^{4}-\frac{90625}{124668}a^{3}+\frac{218465}{124668}a^{2}-\frac{4375}{41556}a-\frac{6649}{41556}$, $\frac{3647351}{2181690}a^{9}-\frac{5275231}{2181690}a^{8}-\frac{8519921}{727230}a^{7}-\frac{6301595}{62334}a^{6}+\frac{8964757}{62334}a^{5}+\frac{58515123}{48482}a^{4}-\frac{155298446}{218169}a^{3}-\frac{734258645}{218169}a^{2}-\frac{8314100}{72723}a-\frac{37496468}{72723}$, $\frac{2333833}{2181690}a^{9}-\frac{1737713}{727230}a^{8}+\frac{3321389}{727230}a^{7}-\frac{3873781}{62334}a^{6}+\frac{2732837}{20778}a^{5}+\frac{2361537}{48482}a^{4}-\frac{166206988}{218169}a^{3}+\frac{118182200}{72723}a^{2}-\frac{8170378}{72723}a+\frac{5715856}{24241}$, $\frac{82592879}{2181690}a^{9}+\frac{99403763}{436338}a^{8}+\frac{247109059}{727230}a^{7}-\frac{23087897}{62334}a^{6}-\frac{537722785}{62334}a^{5}+\frac{228987741}{48482}a^{4}-\frac{2210468123}{218169}a^{3}-\frac{23461377679}{218169}a^{2}-\frac{110103797}{72723}a-\frac{1145676346}{72723}$, $\frac{34568995771}{484820}a^{9}+\frac{94575036641}{484820}a^{8}+\frac{258789762739}{484820}a^{7}-\frac{29150876983}{13852}a^{6}-\frac{79743940449}{13852}a^{5}+\frac{546544747295}{96964}a^{4}-\frac{1413718501983}{48482}a^{3}-\frac{3867406235023}{48482}a^{2}-\frac{208019577041}{48482}a-\frac{568745137427}{48482}$, $\frac{394305029}{4363380}a^{9}+\frac{6245049863}{4363380}a^{8}-\frac{1991269345}{290892}a^{7}-\frac{478891673}{124668}a^{6}+\frac{27982698521}{623340}a^{5}-\frac{7046698479}{96964}a^{4}-\frac{20558006789}{436338}a^{3}+\frac{135505145665}{436338}a^{2}-\frac{1040342915}{145446}a+\frac{6800241457}{145446}$
|
| |
| Regulator: | \( 107277081.975 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 107277081.975 \cdot 1}{2\cdot\sqrt{13122000000000000000000}}\cr\approx \mathstrut & 1.85838857649 \end{aligned}\] (assuming GRH)
Galois group
$S_5\wr C_2$ (as 10T43):
| A non-solvable group of order 28800 |
| The 35 conjugacy class representatives for $S_5^2 \wr C_2$ |
| Character table for $S_5^2 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{5}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{5}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.4.10a1.1 | $x^{4} + 4 x^{3} + 2$ | $4$ | $1$ | $10$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.3.6a5.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 35 x^{3} + 42 x^{2} + 30 x + 11$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ | |
|
\(5\)
| 5.2.5.18a1.15 | $x^{10} + 20 x^{9} + 170 x^{8} + 800 x^{7} + 2280 x^{6} + 4064 x^{5} + 4560 x^{4} + 3250 x^{3} + 1660 x^{2} + 820 x + 237$ | $5$ | $2$ | $18$ | $(C_5^2 : C_4) : C_2$ | $$[\frac{5}{4}, \frac{9}{4}]_{4}^{2}$$ |