Show commands: Magma
Group invariants
| Abstract group: | $S_5^2 \wr C_2$ |
| |
| Order: | $28800=2^{7} \cdot 3^{2} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $43$ |
| |
| CHM label: | $[S(5)^{2}]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(2,4,6,8,10)$, $(1,6)(2,7)(3,8)(4,9)(5,10)$, $(2,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
12T288, 20T539, 20T540, 20T542, 20T544, 24T13996, 24T13997, 24T13998, 25T106, 30T1011, 36T13308, 40T14374, 40T14375, 40T14376, 40T14377, 40T14378, 40T14379, 40T14380, 40T14381Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2,1^{8}$ | $20$ | $2$ | $1$ | $( 4,10)$ |
| 2B | $2^{2},1^{6}$ | $30$ | $2$ | $2$ | $( 4, 8)( 6,10)$ |
| 2C | $2^{2},1^{6}$ | $100$ | $2$ | $2$ | $(1,9)(2,8)$ |
| 2D | $2^{5}$ | $120$ | $2$ | $5$ | $( 1, 6)( 2, 9)( 3, 4)( 5, 8)( 7,10)$ |
| 2E | $2^{4},1^{2}$ | $225$ | $2$ | $4$ | $( 1, 5)( 2,10)( 3, 9)( 4, 6)$ |
| 2F | $2^{3},1^{4}$ | $300$ | $2$ | $3$ | $( 3, 9)( 4,10)( 5, 7)$ |
| 3A | $3,1^{7}$ | $40$ | $3$ | $2$ | $(4,6,8)$ |
| 3B | $3^{2},1^{4}$ | $400$ | $3$ | $4$ | $( 3, 7, 5)( 4, 6,10)$ |
| 4A | $4,1^{6}$ | $60$ | $4$ | $3$ | $( 4, 6, 8,10)$ |
| 4B | $4,2,1^{4}$ | $600$ | $4$ | $4$ | $(1,5,3,9)(2,6)$ |
| 4C | $4^{2},1^{2}$ | $900$ | $4$ | $6$ | $( 1, 9, 5, 3)( 2, 4,10, 6)$ |
| 4D | $4,2^{2},1^{2}$ | $900$ | $4$ | $5$ | $(2,6,4,8)(3,5)(7,9)$ |
| 4E | $4,2^{3}$ | $1200$ | $4$ | $6$ | $( 1, 2, 9, 8)( 3, 4)( 5,10)( 6, 7)$ |
| 4F | $4^{2},2$ | $1800$ | $4$ | $7$ | $( 1, 4, 5, 8)( 2, 7)( 3,10, 9, 6)$ |
| 5A | $5,1^{5}$ | $48$ | $5$ | $4$ | $(1,9,7,5,3)$ |
| 5B | $5^{2}$ | $576$ | $5$ | $8$ | $( 1, 7, 5, 9, 3)( 2, 4, 6,10, 8)$ |
| 6A | $3,2,1^{5}$ | $40$ | $6$ | $3$ | $( 2,10, 6)( 4, 8)$ |
| 6B | $3^{2},2^{2}$ | $400$ | $6$ | $6$ | $( 1, 9)( 2, 8)( 3, 5, 7)( 4,10, 6)$ |
| 6C | $3,2^{2},1^{3}$ | $400$ | $6$ | $4$ | $( 2,10)( 4, 8, 6)( 5, 9)$ |
| 6D | $3,2,1^{5}$ | $400$ | $6$ | $3$ | $( 1, 7)( 4,10, 6)$ |
| 6E | $3,2^{2},1^{3}$ | $600$ | $6$ | $4$ | $(1,3)(4,8,6)(5,7)$ |
| 6F | $3,2^{3},1$ | $600$ | $6$ | $5$ | $( 2, 8, 6)( 3, 9)( 4,10)( 5, 7)$ |
| 6G | $3^{2},2,1^{2}$ | $800$ | $6$ | $5$ | $( 2, 6, 8)( 3, 7, 9)( 4,10)$ |
| 6H | $6,2^{2}$ | $2400$ | $6$ | $7$ | $( 1, 4, 3, 8, 5, 2)( 6, 7)( 9,10)$ |
| 8A | $8,2$ | $3600$ | $8$ | $8$ | $( 1, 4, 9,10, 5, 6, 3, 2)( 7, 8)$ |
| 10A | $5,2,1^{3}$ | $480$ | $10$ | $5$ | $(1,3,7,9,5)(4,8)$ |
| 10B | $5,2^{2},1$ | $720$ | $10$ | $6$ | $( 1, 5, 9, 3, 7)( 4, 8)( 6,10)$ |
| 10C | $10$ | $2880$ | $10$ | $9$ | $( 1, 2, 7, 4, 5, 6, 9,10, 3, 8)$ |
| 12A | $4,3,1^{3}$ | $1200$ | $12$ | $5$ | $(1,7,3,5)(4,6,8)$ |
| 12B | $4,3,2,1$ | $1200$ | $12$ | $6$ | $( 1, 9, 3, 5)( 2, 6)( 4, 8,10)$ |
| 12C | $6,4$ | $2400$ | $12$ | $8$ | $( 1, 8, 9, 2)( 3, 6, 5, 4, 7,10)$ |
| 15A | $5,3,1^{2}$ | $960$ | $15$ | $6$ | $( 1, 5, 9, 7, 3)( 2,10, 6)$ |
| 20A | $5,4,1$ | $1440$ | $20$ | $7$ | $( 1, 3, 5, 7, 9)( 4, 6, 8,10)$ |
| 30A | $5,3,2$ | $960$ | $30$ | $7$ | $( 1, 7, 5, 3, 9)( 2, 6,10)( 4, 8)$ |
Character table
35 x 35 character table
Regular extensions
| $f_{ 1 } =$ |
$x^{10} + 2 x^{5} + t x^{2} + 1$
|