Properties

Label 5.2.5.18a1.15
Base \(\Q_{5}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(18\)
Galois group $(C_5^2 : C_4) : C_2$ (as 10T17)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{5} + \left(50 x + 100\right) ( x^{2} + 4 x + 2 ) + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $10$
Ramification index $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{9}{4}]$
Visible Swan slopes:$[\frac{5}{4}]$
Means:$\langle1\rangle$
Rams:$(\frac{5}{4})$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(75 t + 25\right) x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (3 t + 1)$
Associated inertia:$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois degree: $200$
Galois group: $D_5:F_5$ (as 10T17)
Inertia group: Intransitive group isomorphic to $C_5:F_5$
Wild inertia group: $C_5^2$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{5}{4}, \frac{9}{4}]$
Galois Swan slopes: $[\frac{1}{4},\frac{5}{4}]$
Galois mean slope: $2.03$
Galois splitting model: $x^{10} - 10 x^{5} + 1275$ Copy content Toggle raw display