Defining polynomial
$( x^{2} + 4 x + 2 )^{5} + \left(50 x + 100\right) ( x^{2} + 4 x + 2 ) + 5$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $18$ |
Discriminant root field: | $\Q_{5}(\sqrt{2})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{5})$: | $C_1$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[\frac{9}{4}]$ |
Visible Swan slopes: | $[\frac{5}{4}]$ |
Means: | $\langle1\rangle$ |
Rams: | $(\frac{5}{4})$ |
Jump set: | undefined |
Roots of unity: | $24 = (5^{ 2 } - 1)$ |
Intermediate fields
$\Q_{5}(\sqrt{2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{2} + 4 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + \left(75 t + 25\right) x + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (3 t + 1)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[5, 0]$ |
Invariants of the Galois closure
Galois degree: | $200$ |
Galois group: | $D_5:F_5$ (as 10T17) |
Inertia group: | Intransitive group isomorphic to $C_5:F_5$ |
Wild inertia group: | $C_5^2$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{5}{4}, \frac{9}{4}]$ |
Galois Swan slopes: | $[\frac{1}{4},\frac{5}{4}]$ |
Galois mean slope: | $2.03$ |
Galois splitting model: |
$x^{10} - 10 x^{5} + 1275$
|