Normalized defining polynomial
\( x^{10} - 100 x^{8} - 200 x^{7} + 4550 x^{6} + 18920 x^{5} - 92500 x^{4} - 651000 x^{3} + 78625 x^{2} + \cdots + 15270800 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[2, 4]$ |
| |
Discriminant: |
\(2048000000000000000000\)
\(\medspace = 2^{29}\cdot 5^{18}\)
|
| |
Root discriminant: | \(135.25\) |
| |
Galois root discriminant: | $2^{55/16}5^{203/100}\approx 284.2495061971761$ | ||
Ramified primes: |
\(2\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{40}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{80}a^{6}-\frac{1}{80}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a^{3}-\frac{7}{16}a^{2}+\frac{7}{16}a+\frac{1}{4}$, $\frac{1}{80}a^{7}-\frac{1}{80}a^{5}-\frac{1}{16}a^{3}+\frac{1}{4}a^{2}+\frac{1}{16}a-\frac{1}{4}$, $\frac{1}{160}a^{8}-\frac{1}{160}a^{6}-\frac{1}{80}a^{5}+\frac{3}{32}a^{4}+\frac{1}{8}a^{3}-\frac{11}{32}a^{2}+\frac{3}{16}a-\frac{1}{4}$, $\frac{1}{351343445353920}a^{9}-\frac{780397830877}{351343445353920}a^{8}+\frac{560560274519}{117114481784640}a^{7}+\frac{760472999623}{351343445353920}a^{6}-\frac{364709213549}{351343445353920}a^{5}+\frac{3029248633469}{70268689070784}a^{4}+\frac{16029755006627}{70268689070784}a^{3}-\frac{489984475055}{70268689070784}a^{2}-\frac{3407458879021}{8783586133848}a+\frac{707826756061}{4391793066924}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{125}{312811344}a^{9}-\frac{475}{156405672}a^{8}-\frac{110}{6516903}a^{7}+\frac{1891}{39101418}a^{6}+\frac{1134443}{782028360}a^{5}+\frac{240175}{156405672}a^{4}-\frac{1901645}{39101418}a^{3}-\frac{10989455}{78202836}a^{2}+\frac{187501885}{312811344}a+\frac{214051867}{78202836}$, $\frac{1756396441829}{351343445353920}a^{9}-\frac{10794725722297}{351343445353920}a^{8}+\frac{40196064469757}{117114481784640}a^{7}+\frac{12\cdots 63}{351343445353920}a^{6}-\frac{44660151813883}{70268689070784}a^{5}-\frac{82\cdots 71}{70268689070784}a^{4}-\frac{26\cdots 27}{70268689070784}a^{3}+\frac{59\cdots 05}{70268689070784}a^{2}+\frac{30\cdots 83}{4391793066924}a+\frac{47\cdots 27}{4391793066924}$, $\frac{75\cdots 31}{70268689070784}a^{9}-\frac{14\cdots 71}{351343445353920}a^{8}-\frac{10\cdots 83}{117114481784640}a^{7}+\frac{47\cdots 53}{351343445353920}a^{6}+\frac{30\cdots 61}{70268689070784}a^{5}+\frac{26\cdots 19}{70268689070784}a^{4}-\frac{79\cdots 71}{70268689070784}a^{3}-\frac{18\cdots 93}{70268689070784}a^{2}+\frac{24\cdots 59}{2195896533462}a+\frac{19\cdots 53}{4391793066924}$, $\frac{14901802647005}{17567172267696}a^{9}+\frac{32\cdots 09}{175671722676960}a^{8}+\frac{48\cdots 59}{14639310223080}a^{7}+\frac{91\cdots 19}{175671722676960}a^{6}-\frac{14\cdots 83}{87835861338480}a^{5}-\frac{37\cdots 73}{35134344535392}a^{4}+\frac{35\cdots 85}{4391793066924}a^{3}+\frac{80\cdots 53}{35134344535392}a^{2}+\frac{77\cdots 83}{8783586133848}a+\frac{12\cdots 77}{1097948266731}$, $\frac{90\cdots 11}{351343445353920}a^{9}-\frac{68\cdots 51}{70268689070784}a^{8}-\frac{25\cdots 11}{117114481784640}a^{7}+\frac{11\cdots 21}{351343445353920}a^{6}+\frac{73\cdots 77}{70268689070784}a^{5}+\frac{62\cdots 59}{70268689070784}a^{4}-\frac{19\cdots 47}{70268689070784}a^{3}-\frac{45\cdots 45}{70268689070784}a^{2}+\frac{46\cdots 89}{17567172267696}a+\frac{11\cdots 24}{1097948266731}$
|
| |
Regulator: | \( 14492543.076974966 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 14492543.076974966 \cdot 1}{2\cdot\sqrt{2048000000000000000000}}\cr\approx \mathstrut & 0.998226495247556 \end{aligned}\] (assuming GRH)
Galois group
$\POPlus(4,5)$ (as 10T41):
A non-solvable group of order 14400 |
The 25 conjugacy class representatives for $(A_5^2 : C_2):C_2$ |
Character table for $(A_5^2 : C_2):C_2$ |
Intermediate fields
\(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | deg 12 |
Degree 20 siblings: | deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 25 sibling: | deg 25 |
Degree 30 sibling: | deg 30 |
Degree 36 sibling: | deg 36 |
Degree 40 siblings: | deg 40, deg 40, deg 40 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
2.1.8.26c1.2 | $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, 4]^{2}$$ | |
\(5\)
| 5.2.5.18a1.15 | $x^{10} + 20 x^{9} + 170 x^{8} + 800 x^{7} + 2280 x^{6} + 4064 x^{5} + 4560 x^{4} + 3250 x^{3} + 1660 x^{2} + 820 x + 237$ | $5$ | $2$ | $18$ | $(C_5^2 : C_4) : C_2$ | $$[\frac{5}{4}, \frac{9}{4}]_{4}^{2}$$ |