Show commands:
Magma
magma: G := TransitiveGroup(10, 41);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $41$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(A_5^2 : C_2):C_2$ | ||
CHM label: | $[1/2.S(5)^{2}]2=[A(5):2]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (2,10)(5,7), (2,4,6,8,10), (1,6)(2,7)(3,8)(4,9)(5,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
12T279, 20T456, 20T459, 24T12117, 25T101, 30T819, 36T9862, 40T10506, 40T10507, 40T10508Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $100$ | $2$ | $(1,3)(6,8)$ |
$ 2, 2, 2, 2, 1, 1 $ | $225$ | $2$ | $( 1, 3)( 2,10)( 5, 7)( 6, 8)$ |
$ 3, 3, 1, 1, 1, 1 $ | $400$ | $3$ | $( 1, 3, 5)( 6, 8,10)$ |
$ 3, 3, 2, 2 $ | $400$ | $6$ | $( 1, 3, 5)( 2, 4)( 6, 8,10)( 7, 9)$ |
$ 4, 4, 1, 1 $ | $900$ | $4$ | $( 1, 3, 5, 7)( 2, 6, 8,10)$ |
$ 5, 5 $ | $288$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 5, 5 $ | $288$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 6, 8,10, 4)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $( 2,10)( 6, 8)$ |
$ 3, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 6, 8,10)$ |
$ 5, 1, 1, 1, 1, 1 $ | $48$ | $5$ | $( 2, 4, 6, 8,10)$ |
$ 3, 2, 2, 1, 1, 1 $ | $400$ | $6$ | $( 1, 3)( 2, 4)( 6, 8,10)$ |
$ 4, 2, 1, 1, 1, 1 $ | $600$ | $4$ | $( 1, 3)( 2, 6, 8,10)$ |
$ 3, 2, 2, 1, 1, 1 $ | $600$ | $6$ | $( 1, 3)( 5, 7)( 6, 8,10)$ |
$ 5, 2, 2, 1 $ | $720$ | $10$ | $( 1, 3)( 2, 4, 6, 8,10)( 5, 7)$ |
$ 5, 3, 1, 1 $ | $960$ | $15$ | $( 1, 3, 5)( 2, 4, 6, 8,10)$ |
$ 4, 3, 2, 1 $ | $1200$ | $12$ | $( 1, 3, 5)( 2, 6, 8,10)( 7, 9)$ |
$ 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 4, 4, 2 $ | $900$ | $4$ | $( 1, 8, 3, 6)( 2, 7,10, 5)( 4, 9)$ |
$ 6, 2, 2 $ | $1200$ | $6$ | $( 1, 8, 3,10, 5, 6)( 2, 7)( 4, 9)$ |
$ 10 $ | $1440$ | $10$ | $( 1, 8, 3,10, 5, 2, 7, 4, 9, 6)$ |
$ 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 9)( 5,10)$ |
$ 6, 2, 2 $ | $1200$ | $6$ | $( 1, 8)( 2, 7, 4, 9,10, 5)( 3, 6)$ |
$ 4, 4, 2 $ | $900$ | $4$ | $( 1, 6, 3, 8)( 2, 7,10, 5)( 4, 9)$ |
$ 10 $ | $1440$ | $10$ | $( 1,10, 5, 2, 7, 6, 3, 4, 9, 8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $14400=2^{6} \cdot 3^{2} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 14400.c | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);