Normalized defining polynomial
\( x^{10} - 15x^{8} + 90x^{6} - 840x^{5} + 1530x^{4} - 3600x^{3} + 7605x^{2} - 1800x + 20277 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[2, 4]$ |
| |
Discriminant: |
\(136687500000000000000\)
\(\medspace = 2^{14}\cdot 3^{7}\cdot 5^{18}\)
|
| |
Root discriminant: | \(103.17\) |
| |
Galois root discriminant: | $2^{71/40}3^{19/20}5^{203/100}\approx 254.97790184447035$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{12}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{12}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{12}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{24}a^{8}-\frac{1}{4}a^{4}-\frac{1}{8}$, $\frac{1}{122182204824}a^{9}+\frac{84798653}{13575800536}a^{8}+\frac{2966222}{5090925201}a^{7}-\frac{31777373}{20363700804}a^{6}-\frac{121333762}{5090925201}a^{5}-\frac{426926765}{20363700804}a^{4}+\frac{61771996}{1696975067}a^{3}+\frac{111340855}{6787900268}a^{2}-\frac{5506158953}{13575800536}a+\frac{3965805849}{13575800536}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{250707655}{20363700804}a^{9}+\frac{32954241}{1696975067}a^{8}-\frac{862751325}{3393950134}a^{7}-\frac{1092443807}{3393950134}a^{6}+\frac{3605084850}{1696975067}a^{5}-\frac{27949926449}{3393950134}a^{4}-\frac{6763482519}{3393950134}a^{3}+\frac{153353087433}{3393950134}a^{2}-\frac{577528758201}{6787900268}a+\frac{919675398533}{3393950134}$, $\frac{64647331}{20363700804}a^{9}+\frac{38355293}{40727401608}a^{8}-\frac{473915211}{6787900268}a^{7}-\frac{1523021087}{20363700804}a^{6}+\frac{3023298707}{5090925201}a^{5}-\frac{9345072003}{6787900268}a^{4}+\frac{21445085351}{6787900268}a^{3}-\frac{20689800907}{6787900268}a^{2}+\frac{42869865663}{6787900268}a-\frac{76742049497}{13575800536}$, $\frac{28169581}{10181850402}a^{9}+\frac{41441323}{20363700804}a^{8}-\frac{293921429}{6787900268}a^{7}-\frac{172721359}{3393950134}a^{6}+\frac{5742105091}{20363700804}a^{5}-\frac{2879186088}{1696975067}a^{4}+\frac{15321240995}{6787900268}a^{3}-\frac{16620302583}{1696975067}a^{2}+\frac{197587113027}{6787900268}a+\frac{26294928757}{6787900268}$, $\frac{11477028947}{61091102412}a^{9}+\frac{4447607399}{40727401608}a^{8}-\frac{75171874103}{20363700804}a^{7}-\frac{2106043616}{1696975067}a^{6}+\frac{54200214684}{1696975067}a^{5}-\frac{1603808631115}{10181850402}a^{4}+\frac{528226040385}{6787900268}a^{3}+\frac{499485807613}{1696975067}a^{2}-\frac{2612535926839}{6787900268}a+\frac{29948518048847}{13575800536}$, $\frac{589744554379}{122182204824}a^{9}-\frac{128732562295}{3393950134}a^{8}+\frac{248137765866}{1696975067}a^{7}-\frac{4799072586653}{10181850402}a^{6}+\frac{1994593790412}{1696975067}a^{5}-\frac{63079786458869}{20363700804}a^{4}+\frac{21473811415437}{3393950134}a^{3}-\frac{16074959885844}{1696975067}a^{2}+\frac{195482634796833}{13575800536}a-\frac{40854544747409}{6787900268}$
|
| |
Regulator: | \( 6493755.58396 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 6493755.58396 \cdot 1}{2\cdot\sqrt{136687500000000000000}}\cr\approx \mathstrut & 1.73133459580 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.10.14a1.6 | $x^{10} + 2 x^{7} + 2 x^{5} + 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 2]_{5}^{4}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
3.1.4.3a1.2 | $x^{4} + 6$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
3.1.5.4a1.1 | $x^{5} + 3$ | $5$ | $1$ | $4$ | $F_5$ | $$[\ ]_{5}^{4}$$ | |
\(5\)
| 5.2.5.18a1.15 | $x^{10} + 20 x^{9} + 170 x^{8} + 800 x^{7} + 2280 x^{6} + 4064 x^{5} + 4560 x^{4} + 3250 x^{3} + 1660 x^{2} + 820 x + 237$ | $5$ | $2$ | $18$ | $(C_5^2 : C_4) : C_2$ | $$[\frac{5}{4}, \frac{9}{4}]_{4}^{2}$$ |