Normalized defining polynomial
\( x^{10} - 100x^{7} - 300x^{6} + 1080x^{5} + 7500x^{4} - 45000x^{3} + 58500x^{2} + 378000x + 696600 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-3888000000000000000000\)
\(\medspace = -\,2^{22}\cdot 3^{5}\cdot 5^{18}\)
|
| |
Root discriminant: | \(144.20\) |
| |
Galois root discriminant: | $2^{3}3^{7/6}5^{203/100}\approx 756.206767448359$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{150}a^{5}+\frac{1}{6}a^{4}-\frac{1}{3}a^{3}-\frac{2}{5}$, $\frac{1}{300}a^{6}-\frac{1}{3}a^{3}-\frac{1}{2}a^{2}-\frac{1}{5}a$, $\frac{1}{300}a^{7}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{5}a^{2}$, $\frac{1}{900}a^{8}+\frac{1}{450}a^{5}-\frac{1}{15}a^{3}+\frac{1}{3}a^{2}+\frac{1}{5}$, $\frac{1}{2201859150300}a^{9}-\frac{178595861}{733953050100}a^{8}+\frac{3206582}{12232550835}a^{7}-\frac{3452894047}{2201859150300}a^{6}-\frac{256763923}{366976525050}a^{5}+\frac{3583492831}{24465101670}a^{4}-\frac{3053695177}{36697652505}a^{3}+\frac{1769880223}{4893020334}a^{2}-\frac{201998021}{12232550835}a-\frac{916344688}{4077516945}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{71\cdots 67}{2201859150300}a^{9}+\frac{12\cdots 31}{733953050100}a^{8}+\frac{70\cdots 21}{244651016700}a^{7}-\frac{94\cdots 33}{220185915030}a^{6}-\frac{12\cdots 94}{36697652505}a^{5}-\frac{16\cdots 43}{24465101670}a^{4}+\frac{32\cdots 69}{73395305010}a^{3}+\frac{20\cdots 37}{12232550835}a^{2}+\frac{56\cdots 32}{2446510167}a+\frac{67\cdots 81}{815503389}$, $\frac{61\cdots 28}{550464787575}a^{9}+\frac{63\cdots 76}{36697652505}a^{8}-\frac{35\cdots 11}{244651016700}a^{7}+\frac{17\cdots 45}{22018591503}a^{6}-\frac{38\cdots 01}{73395305010}a^{5}+\frac{25\cdots 01}{12232550835}a^{4}-\frac{54\cdots 11}{14679061002}a^{3}-\frac{16\cdots 82}{12232550835}a^{2}+\frac{24\cdots 15}{2446510167}a+\frac{48\cdots 65}{815503389}$, $\frac{12\cdots 68}{61162754175}a^{9}+\frac{21\cdots 61}{20387584725}a^{8}+\frac{72\cdots 91}{13591723150}a^{7}+\frac{62\cdots 58}{12232550835}a^{6}-\frac{20\cdots 93}{4077516945}a^{5}-\frac{38\cdots 42}{4077516945}a^{4}+\frac{36\cdots 53}{4077516945}a^{3}-\frac{72\cdots 41}{1359172315}a^{2}-\frac{51\cdots 89}{271834463}a-\frac{71\cdots 15}{271834463}$, $\frac{14\cdots 18}{550464787575}a^{9}+\frac{35\cdots 37}{733953050100}a^{8}-\frac{53\cdots 43}{244651016700}a^{7}-\frac{23\cdots 18}{110092957515}a^{6}-\frac{95\cdots 89}{73395305010}a^{5}+\frac{84\cdots 27}{24465101670}a^{4}+\frac{19\cdots 73}{73395305010}a^{3}-\frac{13\cdots 41}{12232550835}a^{2}-\frac{41\cdots 41}{2446510167}a+\frac{20\cdots 27}{815503389}$
|
| |
Regulator: | \( 279210594.529 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 279210594.529 \cdot 1}{2\cdot\sqrt{3888000000000000000000}}\cr\approx \mathstrut & 21.9249247458 \end{aligned}\] (assuming GRH)
Galois group
$S_5\wr C_2$ (as 10T43):
A non-solvable group of order 28800 |
The 35 conjugacy class representatives for $S_5^2 \wr C_2$ |
Character table for $S_5^2 \wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 25 sibling: | data not computed |
Degree 30 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
2.1.4.11a1.4 | $x^{4} + 8 x^{3} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $$[3, 4]^{2}$$ | |
2.1.4.8b1.5 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
\(5\)
| 5.2.5.18a1.15 | $x^{10} + 20 x^{9} + 170 x^{8} + 800 x^{7} + 2280 x^{6} + 4064 x^{5} + 4560 x^{4} + 3250 x^{3} + 1660 x^{2} + 820 x + 237$ | $5$ | $2$ | $18$ | $(C_5^2 : C_4) : C_2$ | $$[\frac{5}{4}, \frac{9}{4}]_{4}^{2}$$ |