Normalized defining polynomial
\( x^{10} + 50x^{8} - 150x^{7} + 725x^{6} - 4440x^{5} + 8125x^{4} - 24750x^{3} + 74250x^{2} - 130500x + 234225 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-40500000000000000000\)
\(\medspace = -\,2^{17}\cdot 3^{4}\cdot 5^{18}\)
|
| |
Root discriminant: | \(91.36\) |
| |
Galois root discriminant: | $2^{11/6}3^{7/6}5^{203/100}\approx 336.8518198843963$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{20}a^{5}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{60}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{6}a^{2}+\frac{1}{4}a$, $\frac{1}{60}a^{7}-\frac{1}{4}a^{4}+\frac{1}{12}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{360}a^{8}+\frac{1}{180}a^{7}-\frac{1}{120}a^{6}-\frac{1}{60}a^{5}+\frac{1}{18}a^{4}-\frac{17}{36}a^{3}+\frac{11}{24}a^{2}-\frac{1}{4}a-\frac{3}{8}$, $\frac{1}{539279596080}a^{9}-\frac{295688591}{539279596080}a^{8}+\frac{343574351}{107855919216}a^{7}-\frac{159507089}{35951973072}a^{6}+\frac{952560053}{53927959608}a^{5}-\frac{13228421617}{53927959608}a^{4}-\frac{7555668377}{107855919216}a^{3}-\frac{6198585425}{35951973072}a^{2}-\frac{2589543333}{11983991024}a-\frac{972264925}{11983991024}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{17059708766}{33704974755}a^{9}+\frac{382204246019}{269639798040}a^{8}+\frac{438369829097}{14979988780}a^{7}+\frac{107078483377}{17975986536}a^{6}+\frac{5158844586349}{13481989902}a^{5}-\frac{7945656534014}{6740994951}a^{4}+\frac{1186556301839}{1497998878}a^{3}-\frac{185786947827149}{17975986536}a^{2}+\frac{25558708946575}{2995997756}a-\frac{252873945870587}{5991995512}$, $\frac{3487190467}{44939966340}a^{9}-\frac{30181053512}{33704974755}a^{8}+\frac{79536104993}{13481989902}a^{7}-\frac{82096817765}{1497998878}a^{6}+\frac{810653750851}{2995997756}a^{5}-\frac{31909185340097}{26963979804}a^{4}+\frac{132291933824477}{26963979804}a^{3}-\frac{37365876777691}{2995997756}a^{2}+\frac{60190102206265}{2995997756}a-\frac{28678668178367}{1497998878}$, $\frac{11\cdots 01}{269639798040}a^{9}+\frac{36\cdots 29}{269639798040}a^{8}+\frac{14\cdots 21}{53927959608}a^{7}+\frac{26\cdots 99}{17975986536}a^{6}+\frac{24\cdots 89}{6740994951}a^{5}-\frac{11\cdots 33}{13481989902}a^{4}+\frac{51\cdots 47}{53927959608}a^{3}-\frac{14\cdots 63}{17975986536}a^{2}+\frac{47\cdots 35}{5991995512}a-\frac{19\cdots 97}{5991995512}$, $\frac{13\cdots 57}{539279596080}a^{9}+\frac{54502888111863}{59919955120}a^{8}+\frac{11\cdots 51}{107855919216}a^{7}-\frac{11\cdots 59}{35951973072}a^{6}+\frac{41\cdots 03}{53927959608}a^{5}-\frac{97\cdots 49}{17975986536}a^{4}-\frac{35\cdots 81}{107855919216}a^{3}+\frac{63\cdots 63}{11983991024}a^{2}-\frac{16\cdots 85}{11983991024}a+\frac{26\cdots 29}{11983991024}$
|
| |
Regulator: | \( 2918061.90553 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 2918061.90553 \cdot 1}{2\cdot\sqrt{40500000000000000000}}\cr\approx \mathstrut & 2.24510333790 \end{aligned}\] (assuming GRH)
Galois group
$\POPlus(4,5)$ (as 10T41):
A non-solvable group of order 14400 |
The 25 conjugacy class representatives for $(A_5^2 : C_2):C_2$ |
Character table for $(A_5^2 : C_2):C_2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 24 sibling: | data not computed |
Degree 25 sibling: | data not computed |
Degree 30 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.5.0.1}{5} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.10.0.1}{10} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
2.1.6.11a1.1 | $x^{6} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
\(5\)
| 5.2.5.18a1.15 | $x^{10} + 20 x^{9} + 170 x^{8} + 800 x^{7} + 2280 x^{6} + 4064 x^{5} + 4560 x^{4} + 3250 x^{3} + 1660 x^{2} + 820 x + 237$ | $5$ | $2$ | $18$ | $(C_5^2 : C_4) : C_2$ | $$[\frac{5}{4}, \frac{9}{4}]_{4}^{2}$$ |