Normalized defining polynomial
\( x^{8} - 32x^{6} - 24x^{5} + 286x^{4} + 384x^{3} - 336x^{2} - 360x + 28 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[8, 0]$ |
| |
Discriminant: |
\(98706291490816\)
\(\medspace = 2^{16}\cdot 197^{4}\)
|
| |
Root discriminant: | \(56.14\) |
| |
Galois root discriminant: | $2^{13/6}197^{1/2}\approx 63.01802241635832$ | ||
Ramified primes: |
\(2\), \(197\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{38}a^{6}+\frac{3}{19}a^{5}-\frac{5}{38}a^{4}+\frac{3}{19}a^{3}+\frac{3}{19}a^{2}-\frac{7}{19}a-\frac{9}{19}$, $\frac{1}{722}a^{7}+\frac{3}{722}a^{6}-\frac{23}{722}a^{5}-\frac{93}{722}a^{4}-\frac{177}{361}a^{3}+\frac{22}{361}a^{2}-\frac{102}{361}a-\frac{125}{361}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{5}{361}a^{7}-\frac{27}{722}a^{6}-\frac{211}{722}a^{5}+\frac{219}{361}a^{4}+\frac{586}{361}a^{3}-\frac{673}{361}a^{2}-\frac{621}{361}a-\frac{15}{361}$, $\frac{9}{361}a^{7}-\frac{11}{361}a^{6}-\frac{509}{722}a^{5}+\frac{75}{361}a^{4}+\frac{2001}{361}a^{3}+\frac{1251}{361}a^{2}-\frac{1665}{361}a-\frac{1205}{361}$, $\frac{5}{361}a^{7}-\frac{27}{722}a^{6}-\frac{211}{722}a^{5}+\frac{219}{361}a^{4}+\frac{586}{361}a^{3}-\frac{673}{361}a^{2}-\frac{982}{361}a-\frac{737}{361}$, $\frac{7}{361}a^{7}+\frac{23}{722}a^{6}-\frac{218}{361}a^{5}-\frac{423}{361}a^{4}+\frac{1797}{361}a^{3}+\frac{3861}{361}a^{2}-\frac{1656}{361}a-\frac{3023}{361}$, $\frac{1}{19}a^{7}-\frac{2}{19}a^{6}-\frac{49}{38}a^{5}+\frac{27}{19}a^{4}+\frac{167}{19}a^{3}-\frac{5}{19}a^{2}-\frac{153}{19}a-\frac{27}{19}$, $\frac{81}{722}a^{7}-\frac{21}{361}a^{6}-\frac{1245}{361}a^{5}-\frac{527}{361}a^{4}+\frac{10800}{361}a^{3}+\frac{13201}{361}a^{2}-\frac{11321}{361}a-\frac{12975}{361}$, $\frac{31}{361}a^{7}-\frac{23}{722}a^{6}-\frac{979}{361}a^{5}-\frac{375}{361}a^{4}+\frac{8615}{361}a^{3}+\frac{8318}{361}a^{2}-\frac{9554}{361}a-\frac{1537}{361}$
|
| |
Regulator: | \( 33345.2323585 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 33345.2323585 \cdot 1}{2\cdot\sqrt{98706291490816}}\cr\approx \mathstrut & 0.429606951461 \end{aligned}\]
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
\(\Q(\sqrt{197}) \), 4.4.50432.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 4 sibling: | 4.4.50432.1 |
Degree 6 siblings: | 6.6.39740416.1, 6.6.7828861952.1 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | 4.4.50432.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.1.0.1}{1} }^{8}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.4.16a1.3 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 23 x^{4} + 24 x^{3} + 26 x^{2} + 16 x + 11$ | $4$ | $2$ | $16$ | $S_4$ | $$[\frac{8}{3}, \frac{8}{3}]_{3}^{2}$$ |
\(197\)
| 197.2.2.2a1.2 | $x^{4} + 384 x^{3} + 36868 x^{2} + 768 x + 201$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
197.2.2.2a1.2 | $x^{4} + 384 x^{3} + 36868 x^{2} + 768 x + 201$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |