Normalized defining polynomial
\( x^{4} - 10x^{2} - 12x - 1 \)
Invariants
Degree: | $4$ |
| |
Signature: | $[4, 0]$ |
| |
Discriminant: |
\(50432\)
\(\medspace = 2^{8}\cdot 197\)
|
| |
Root discriminant: | \(14.99\) |
| |
Galois root discriminant: | $2^{13/6}197^{1/2}\approx 63.01802241635832$ | ||
Ramified primes: |
\(2\), \(197\)
|
| |
Discriminant root field: | \(\Q(\sqrt{197}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a^{3}-2a^{2}-6a$, $a$, $2a^{3}-4a^{2}-11a-2$
|
| |
Regulator: | \( 17.095908946 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{0}\cdot 17.095908946 \cdot 1}{2\cdot\sqrt{50432}}\cr\approx \mathstrut & 0.60901653963 \end{aligned}\]
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 24 |
Degree 6 siblings: | 6.6.39740416.1, 6.6.7828861952.1 |
Degree 8 sibling: | 8.8.98706291490816.1 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.4.8a1.2 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $$[\frac{8}{3}, \frac{8}{3}]_{3}^{2}$$ |
\(197\)
| 197.1.2.1a1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
197.2.1.0a1.1 | $x^{2} + 192 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.197.2t1.a.a | $1$ | $ 197 $ | \(\Q(\sqrt{197}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
2.788.3t2.a.a | $2$ | $ 2^{2} \cdot 197 $ | 3.3.788.1 | $S_3$ (as 3T2) | $1$ | $2$ | |
3.9935104.6t8.a.a | $3$ | $ 2^{8} \cdot 197^{2}$ | 4.4.50432.1 | $S_4$ (as 4T5) | $1$ | $3$ | |
* | 3.50432.4t5.a.a | $3$ | $ 2^{8} \cdot 197 $ | 4.4.50432.1 | $S_4$ (as 4T5) | $1$ | $3$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.