Properties

Label 3.9935104.6t8.a.a
Dimension $3$
Group $S_4$
Conductor $9935104$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(9935104\)\(\medspace = 2^{8} \cdot 197^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.50432.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.4.50432.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 10x^{2} - 12x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 28 + 24\cdot 53 + 12\cdot 53^{2} + 36\cdot 53^{3} + 32\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 39 + 38\cdot 53^{2} + 38\cdot 53^{3} + 40\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 45 + 37\cdot 53 + 46\cdot 53^{2} + 18\cdot 53^{3} + 50\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 47 + 42\cdot 53 + 8\cdot 53^{2} + 12\cdot 53^{3} + 35\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$