Properties

Label 3.9935104.6t8.a
Dimension $3$
Group $S_4$
Conductor $9935104$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(9935104\)\(\medspace = 2^{8} \cdot 197^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.4.50432.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.4.50432.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 28 + 24\cdot 53 + 12\cdot 53^{2} + 36\cdot 53^{3} + 32\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 39 + 38\cdot 53^{2} + 38\cdot 53^{3} + 40\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 45 + 37\cdot 53 + 46\cdot 53^{2} + 18\cdot 53^{3} + 50\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 47 + 42\cdot 53 + 8\cdot 53^{2} + 12\cdot 53^{3} + 35\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.