Show commands: Magma
Group invariants
| Abstract group: | $S_4$ |
| |
| Order: | $24=2^{3} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $4$ |
| |
| Transitive number $t$: | $5$ |
| |
| CHM label: | $S4$ | ||
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,3,4)$, $(1,2)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Low degree siblings
6T7, 6T8, 8T14, 12T8, 12T9, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{2}$ | $3$ | $2$ | $2$ | $(1,2)(3,4)$ |
| 2B | $2,1^{2}$ | $6$ | $2$ | $1$ | $(1,2)$ |
| 3A | $3,1$ | $8$ | $3$ | $2$ | $(1,2,3)$ |
| 4A | $4$ | $6$ | $4$ | $3$ | $(1,4,2,3)$ |
Character table
| 1A | 2A | 2B | 3A | 4A | ||
| Size | 1 | 3 | 6 | 8 | 6 | |
| 2 P | 1A | 1A | 1A | 3A | 2A | |
| 3 P | 1A | 2A | 2B | 1A | 4A | |
| Type | ||||||
| 24.12.1a | R | |||||
| 24.12.1b | R | |||||
| 24.12.2a | R | |||||
| 24.12.3a | R | |||||
| 24.12.3b | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{4}+s x^{2}+t x+t$
|
| The polynomial $f_{1}$ is generic for any base field $K$ |