Properties

Label 4T5
Degree $4$
Order $24$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $S_4$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(4, 5);
 

Group action invariants

Degree $n$:  $4$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_4$
CHM label:  $S4$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
Nilpotency class:  $-1$ (not nilpotent)
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4), (1,2)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$6$:  $S_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Low degree siblings

6T7, 6T8, 8T14, 12T8, 12T9, 24T10

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1, 1 $ $6$ $2$ $(3,4)$
$ 3, 1 $ $8$ $3$ $(2,3,4)$
$ 2, 2 $ $3$ $2$ $(1,2)(3,4)$
$ 4 $ $6$ $4$ $(1,2,3,4)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $24=2^{3} \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Label:  24.12
magma: IdentifyGroup(G);
 
Character table:   
     2  3  2  .  3  2
     3  1  .  1  .  .

       1a 2a 3a 2b 4a
    2P 1a 1a 3a 1a 2b
    3P 1a 2a 1a 2b 4a

X.1     1 -1  1  1 -1
X.2     3 -1  . -1  1
X.3     2  . -1  2  .
X.4     3  1  . -1 -1
X.5     1  1  1  1  1

magma: CharacterTable(G);