Properties

Label 4T5
4T5 1 2 1->2 1->2 3 2->3 4 3->4 4->1
Degree $4$
Order $24$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $S_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(4, 5);
 

Group invariants

Abstract group:  $S_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $24=2^{3} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $4$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $S4$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4)$, $(1,2)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$6$:  $S_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Low degree siblings

6T7, 6T8, 8T14, 12T8, 12T9, 24T10

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{4}$ $1$ $1$ $0$ $()$
2A $2^{2}$ $3$ $2$ $2$ $(1,2)(3,4)$
2B $2,1^{2}$ $6$ $2$ $1$ $(1,2)$
3A $3,1$ $8$ $3$ $2$ $(1,2,3)$
4A $4$ $6$ $4$ $3$ $(1,4,2,3)$

Malle's constant $a(G)$:     $1$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A
Size 1 3 6 8 6
2 P 1A 1A 1A 3A 2A
3 P 1A 2A 2B 1A 4A
Type
24.12.1a R 1 1 1 1 1
24.12.1b R 1 1 1 1 1
24.12.2a R 2 2 0 1 0
24.12.3a R 3 1 1 0 1
24.12.3b R 3 1 1 0 1

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{4}+s x^{2}+t x+t$ Copy content Toggle raw display
The polynomial $f_{1}$ is generic for any base field $K$