Show commands:
Magma
magma: G := TransitiveGroup(4, 5);
Group action invariants
Degree $n$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_4$ | ||
CHM label: | $S4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4), (1,2) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Low degree siblings
6T7, 6T8, 8T14, 12T8, 12T9, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 1, 1 $ | $6$ | $2$ | $(3,4)$ |
$ 3, 1 $ | $8$ | $3$ | $(2,3,4)$ |
$ 2, 2 $ | $3$ | $2$ | $(1,2)(3,4)$ |
$ 4 $ | $6$ | $4$ | $(1,2,3,4)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 24.12 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 . 3 2 3 1 . 1 . . 1a 2a 3a 2b 4a 2P 1a 1a 3a 1a 2b 3P 1a 2a 1a 2b 4a X.1 1 -1 1 1 -1 X.2 3 -1 . -1 1 X.3 2 . -1 2 . X.4 3 1 . -1 -1 X.5 1 1 1 1 1 |
magma: CharacterTable(G);