Defining polynomial
$( x^{2} + 192 x + 2 )^{2} + 197$
|
Invariants
Base field: | $\Q_{197}$ |
Degree $d$: | $4$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $2$ |
Discriminant root field: | $\Q_{197}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{197})$ $=$$\Gal(K/\Q_{197})$: | $C_2^2$ |
This field is Galois and abelian over $\Q_{197}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $38808 = (197^{ 2 } - 1)$ |
Intermediate fields
$\Q_{197}(\sqrt{2})$, $\Q_{197}(\sqrt{197})$, $\Q_{197}(\sqrt{197\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{197}(\sqrt{2})$ $\cong \Q_{197}(t)$ where $t$ is a root of
\( x^{2} + 192 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 197 \)
$\ \in\Q_{197}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + 2$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $4$ |
Galois group: | $C_2^2$ (as 4T2) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.5$ |
Galois splitting model: | $x^{4} - 93 x^{2} + 2704$ |