Normalized defining polynomial
\( x^{8} - 3x^{7} - 63x^{6} + 90x^{5} + 1311x^{4} - 20x^{3} - 7702x^{2} - 5524x - 1009 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(74220378765625\) \(\medspace = 5^{6}\cdot 41^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(54.18\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}41^{3/4}\approx 54.17705527224281$ | ||
Ramified primes: | \(5\), \(41\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{183}a^{6}-\frac{47}{183}a^{5}-\frac{40}{183}a^{4}+\frac{20}{61}a^{3}-\frac{49}{183}a^{2}+\frac{11}{61}a-\frac{83}{183}$, $\frac{1}{2364177}a^{7}-\frac{2113}{2364177}a^{6}+\frac{370782}{788059}a^{5}-\frac{559081}{2364177}a^{4}-\frac{979351}{2364177}a^{3}+\frac{333677}{2364177}a^{2}-\frac{1078787}{2364177}a+\frac{230221}{2364177}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{49}{788059}a^{7}-\frac{185}{788059}a^{6}-\frac{307}{788059}a^{5}-\frac{6689}{788059}a^{4}-\frac{19952}{788059}a^{3}+\frac{253099}{788059}a^{2}+\frac{197770}{788059}a-\frac{449623}{788059}$, $\frac{72680}{2364177}a^{7}-\frac{87689}{788059}a^{6}-\frac{4365601}{2364177}a^{5}+\frac{8843945}{2364177}a^{4}+\frac{88458658}{2364177}a^{3}-\frac{43827040}{2364177}a^{2}-\frac{520908343}{2364177}a-\frac{172113815}{2364177}$, $\frac{12644}{2364177}a^{7}-\frac{39037}{2364177}a^{6}-\frac{825884}{2364177}a^{5}+\frac{455890}{788059}a^{4}+\frac{17310592}{2364177}a^{3}-\frac{1863815}{788059}a^{2}-\frac{102013915}{2364177}a-\frac{11289458}{788059}$, $\frac{11792}{2364177}a^{7}-\frac{15807}{788059}a^{6}-\frac{613051}{2364177}a^{5}+\frac{1562018}{2364177}a^{4}+\frac{10303174}{2364177}a^{3}-\frac{9761572}{2364177}a^{2}-\frac{51121705}{2364177}a-\frac{18429284}{2364177}$, $\frac{2743}{788059}a^{7}-\frac{37660}{2364177}a^{6}-\frac{417244}{2364177}a^{5}+\frac{1070251}{2364177}a^{4}+\frac{2755895}{788059}a^{3}-\frac{5130908}{2364177}a^{2}-\frac{16358326}{788059}a-\frac{263125}{38757}$, $\frac{14798}{788059}a^{7}-\frac{55870}{788059}a^{6}-\frac{880773}{788059}a^{5}+\frac{1920217}{788059}a^{4}+\frac{17616266}{788059}a^{3}-\frac{10250592}{788059}a^{2}-\frac{101825555}{788059}a-\frac{33338476}{788059}$, $\frac{75272}{788059}a^{7}-\frac{774002}{2364177}a^{6}-\frac{13888760}{2364177}a^{5}+\frac{26245208}{2364177}a^{4}+\frac{1556074}{12919}a^{3}-\frac{125246689}{2364177}a^{2}-\frac{563994914}{788059}a-\frac{561622793}{2364177}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7481.34415348 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 7481.34415348 \cdot 2}{2\cdot\sqrt{74220378765625}}\cr\approx \mathstrut & 0.222309496762 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{205}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{5}, \sqrt{41})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.4.3.1 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.1 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(41\) | 41.4.3.2 | $x^{4} + 82$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
41.4.3.2 | $x^{4} + 82$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.205.2t1.a.a | $1$ | $ 5 \cdot 41 $ | \(\Q(\sqrt{205}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.41.2t1.a.a | $1$ | $ 41 $ | \(\Q(\sqrt{41}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.42025.8t5.a.a | $2$ | $ 5^{2} \cdot 41^{2}$ | 8.8.74220378765625.1 | $Q_8$ (as 8T5) | $-1$ | $2$ |