Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(42025\)\(\medspace = 5^{2} \cdot 41^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $-1$ |
Artin field: | Galois closure of 8.8.74220378765625.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{5}, \sqrt{41})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 3x^{7} - 63x^{6} + 90x^{5} + 1311x^{4} - 20x^{3} - 7702x^{2} - 5524x - 1009 \) . |
The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 31 + 114\cdot 251^{2} + 222\cdot 251^{3} + 73\cdot 251^{4} +O(251^{5})\) |
$r_{ 2 }$ | $=$ | \( 56 + 6\cdot 251 + 134\cdot 251^{2} + 68\cdot 251^{3} + 186\cdot 251^{4} +O(251^{5})\) |
$r_{ 3 }$ | $=$ | \( 58 + 181\cdot 251 + 246\cdot 251^{2} + 82\cdot 251^{3} + 47\cdot 251^{4} +O(251^{5})\) |
$r_{ 4 }$ | $=$ | \( 82 + 29\cdot 251 + 179\cdot 251^{2} + 198\cdot 251^{3} + 231\cdot 251^{4} +O(251^{5})\) |
$r_{ 5 }$ | $=$ | \( 135 + 142\cdot 251 + 64\cdot 251^{2} + 167\cdot 251^{3} + 156\cdot 251^{4} +O(251^{5})\) |
$r_{ 6 }$ | $=$ | \( 174 + 30\cdot 251 + 117\cdot 251^{2} + 189\cdot 251^{3} + 73\cdot 251^{4} +O(251^{5})\) |
$r_{ 7 }$ | $=$ | \( 225 + 239\cdot 251 + 212\cdot 251^{2} + 77\cdot 251^{3} + 239\cdot 251^{4} +O(251^{5})\) |
$r_{ 8 }$ | $=$ | \( 246 + 122\cdot 251 + 186\cdot 251^{2} + 247\cdot 251^{3} + 245\cdot 251^{4} +O(251^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ | $-2$ | |
$2$ | $4$ | $(1,8,2,4)(3,6,7,5)$ | $0$ | |
$2$ | $4$ | $(1,7,2,3)(4,5,8,6)$ | $0$ | |
$2$ | $4$ | $(1,6,2,5)(3,4,7,8)$ | $0$ |