Properties

Label 2.42025.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $42025$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(42025\)\(\medspace = 5^{2} \cdot 41^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.8.74220378765625.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{41})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 3x^{7} - 63x^{6} + 90x^{5} + 1311x^{4} - 20x^{3} - 7702x^{2} - 5524x - 1009 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 31 + 114\cdot 251^{2} + 222\cdot 251^{3} + 73\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 56 + 6\cdot 251 + 134\cdot 251^{2} + 68\cdot 251^{3} + 186\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 58 + 181\cdot 251 + 246\cdot 251^{2} + 82\cdot 251^{3} + 47\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 82 + 29\cdot 251 + 179\cdot 251^{2} + 198\cdot 251^{3} + 231\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 135 + 142\cdot 251 + 64\cdot 251^{2} + 167\cdot 251^{3} + 156\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 174 + 30\cdot 251 + 117\cdot 251^{2} + 189\cdot 251^{3} + 73\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 225 + 239\cdot 251 + 212\cdot 251^{2} + 77\cdot 251^{3} + 239\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 246 + 122\cdot 251 + 186\cdot 251^{2} + 247\cdot 251^{3} + 245\cdot 251^{4} +O(251^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,7,2,3)(4,5,8,6)$
$(1,8,2,4)(3,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,2)(3,7)(4,8)(5,6)$$-2$
$2$$4$$(1,8,2,4)(3,6,7,5)$$0$
$2$$4$$(1,7,2,3)(4,5,8,6)$$0$
$2$$4$$(1,6,2,5)(3,4,7,8)$$0$