Normalized defining polynomial
\( x^{8} - 2x^{7} - 11x^{6} + 6x^{5} + 30x^{4} - 2x^{3} - 22x^{2} + x + 3 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[8, 0]$ |
| |
Discriminant: |
\(46664208361\)
\(\medspace = 17^{2}\cdot 97^{2}\cdot 131^{2}\)
|
| |
Root discriminant: | \(21.56\) |
| |
Galois root discriminant: | $17^{1/2}97^{2/3}131^{1/2}\approx 996.264368545655$ | ||
Ramified primes: |
\(17\), \(97\), \(131\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$4a^{7}-14a^{6}-24a^{5}+63a^{4}+33a^{3}-69a^{2}+2a+10$, $a^{7}-2a^{6}-10a^{5}+3a^{4}+23a^{3}+8a^{2}-9a-5$, $8a^{7}-28a^{6}-48a^{5}+126a^{4}+66a^{3}-139a^{2}+4a+22$, $3a^{7}-10a^{6}-20a^{5}+45a^{4}+34a^{3}-50a^{2}-7a+10$, $2a^{6}-6a^{5}-15a^{4}+24a^{3}+28a^{2}-19a-7$, $8a^{7}-27a^{6}-51a^{5}+118a^{4}+80a^{3}-124a^{2}-10a+19$, $3a^{7}-9a^{6}-23a^{5}+38a^{4}+45a^{3}-40a^{2}-16a+11$
|
| |
Regulator: | \( 1069.35479695 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 1069.35479695 \cdot 1}{2\cdot\sqrt{46664208361}}\cr\approx \mathstrut & 0.633635995026 \end{aligned}\]
Galois group
A non-solvable group of order 20160 |
The 14 conjugacy class representatives for $A_8$ |
Character table for $A_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 15 siblings: | 15.15.8995776251690372238394631846990504365561.1, 15.15.8995776251690372238394631846990504365561.2 |
Degree 28 sibling: | deg 28 |
Degree 35 sibling: | deg 35 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| 17.4.1.0a1.1 | $x^{4} + 7 x^{2} + 10 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
17.2.2.2a1.1 | $x^{4} + 32 x^{3} + 262 x^{2} + 113 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
\(97\)
| 97.1.3.2a1.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
97.5.1.0a1.1 | $x^{5} + 3 x + 92$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
\(131\)
| 131.1.2.1a1.1 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
131.1.2.1a1.2 | $x^{2} + 262$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
131.4.1.0a1.1 | $x^{4} + 9 x^{2} + 109 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |