Normalized defining polynomial
\( x^{15} - 3 x^{14} - 424 x^{13} + 549 x^{12} + 65358 x^{11} - 5743 x^{10} - 4867029 x^{9} + \cdots + 42544769744 \)
Invariants
Degree: | $15$ |
| |
Signature: | $[15, 0]$ |
| |
Discriminant: |
\(8995776251690372238394631846990504365561\)
\(\medspace = 17^{6}\cdot 97^{10}\cdot 131^{6}\)
|
| |
Root discriminant: | \(460.90\) |
| |
Galois root discriminant: | $17^{1/2}97^{2/3}131^{1/2}\approx 996.264368545655$ | ||
Ramified primes: |
\(17\), \(97\), \(131\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{121}a^{13}-\frac{4}{121}a^{12}-\frac{27}{121}a^{11}-\frac{28}{121}a^{10}-\frac{38}{121}a^{9}-\frac{1}{11}a^{8}+\frac{35}{121}a^{7}+\frac{1}{11}a^{6}+\frac{40}{121}a^{5}-\frac{9}{121}a^{4}+\frac{46}{121}a^{3}-\frac{50}{121}a^{2}-\frac{6}{121}a+\frac{27}{121}$, $\frac{1}{60\cdots 01}a^{14}-\frac{22\cdots 06}{60\cdots 01}a^{13}-\frac{13\cdots 57}{60\cdots 01}a^{12}+\frac{26\cdots 19}{60\cdots 01}a^{11}+\frac{63\cdots 97}{60\cdots 01}a^{10}+\frac{29\cdots 95}{60\cdots 01}a^{9}+\frac{37\cdots 62}{60\cdots 01}a^{8}-\frac{19\cdots 63}{60\cdots 01}a^{7}+\frac{11\cdots 32}{60\cdots 01}a^{6}-\frac{20\cdots 81}{54\cdots 91}a^{5}-\frac{25\cdots 19}{60\cdots 01}a^{4}+\frac{24\cdots 44}{60\cdots 01}a^{3}-\frac{30\cdots 67}{60\cdots 01}a^{2}+\frac{28\cdots 11}{60\cdots 01}a+\frac{22\cdots 19}{60\cdots 01}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH) |
|
Unit group
Rank: | $14$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{54\cdots 52}{60\cdots 01}a^{14}-\frac{60\cdots 41}{60\cdots 01}a^{13}-\frac{18\cdots 08}{60\cdots 01}a^{12}+\frac{18\cdots 20}{60\cdots 01}a^{11}+\frac{22\cdots 49}{60\cdots 01}a^{10}-\frac{18\cdots 07}{60\cdots 01}a^{9}-\frac{14\cdots 87}{60\cdots 01}a^{8}+\frac{80\cdots 49}{60\cdots 01}a^{7}+\frac{52\cdots 08}{60\cdots 01}a^{6}-\frac{13\cdots 35}{54\cdots 91}a^{5}-\frac{10\cdots 69}{60\cdots 01}a^{4}+\frac{28\cdots 25}{60\cdots 01}a^{3}+\frac{85\cdots 92}{60\cdots 01}a^{2}+\frac{13\cdots 69}{60\cdots 01}a+\frac{56\cdots 39}{60\cdots 01}$, $\frac{71\cdots 99}{60\cdots 01}a^{14}+\frac{32\cdots 90}{60\cdots 01}a^{13}-\frac{57\cdots 95}{60\cdots 01}a^{12}-\frac{10\cdots 94}{60\cdots 01}a^{11}+\frac{11\cdots 61}{60\cdots 01}a^{10}+\frac{11\cdots 04}{60\cdots 01}a^{9}-\frac{89\cdots 11}{60\cdots 01}a^{8}-\frac{52\cdots 60}{60\cdots 01}a^{7}+\frac{31\cdots 46}{60\cdots 01}a^{6}+\frac{11\cdots 84}{54\cdots 91}a^{5}-\frac{51\cdots 97}{60\cdots 01}a^{4}-\frac{17\cdots 43}{60\cdots 01}a^{3}+\frac{28\cdots 76}{60\cdots 01}a^{2}+\frac{95\cdots 90}{60\cdots 01}a+\frac{45\cdots 47}{60\cdots 01}$, $\frac{26\cdots 89}{60\cdots 01}a^{14}+\frac{93\cdots 66}{60\cdots 01}a^{13}-\frac{11\cdots 48}{60\cdots 01}a^{12}-\frac{55\cdots 22}{60\cdots 01}a^{11}+\frac{15\cdots 58}{60\cdots 01}a^{10}+\frac{91\cdots 81}{60\cdots 01}a^{9}-\frac{83\cdots 02}{60\cdots 01}a^{8}-\frac{64\cdots 88}{60\cdots 01}a^{7}+\frac{15\cdots 79}{60\cdots 01}a^{6}+\frac{17\cdots 52}{54\cdots 91}a^{5}+\frac{18\cdots 93}{60\cdots 01}a^{4}-\frac{19\cdots 42}{60\cdots 01}a^{3}-\frac{62\cdots 49}{60\cdots 01}a^{2}-\frac{68\cdots 31}{60\cdots 01}a-\frac{24\cdots 37}{60\cdots 01}$, $\frac{20\cdots 35}{60\cdots 01}a^{14}-\frac{68\cdots 76}{60\cdots 01}a^{13}-\frac{90\cdots 47}{60\cdots 01}a^{12}+\frac{16\cdots 82}{60\cdots 01}a^{11}+\frac{14\cdots 49}{60\cdots 01}a^{10}-\frac{14\cdots 80}{60\cdots 01}a^{9}-\frac{10\cdots 16}{60\cdots 01}a^{8}+\frac{25\cdots 70}{60\cdots 01}a^{7}+\frac{42\cdots 83}{60\cdots 01}a^{6}+\frac{20\cdots 86}{54\cdots 91}a^{5}-\frac{81\cdots 95}{60\cdots 01}a^{4}-\frac{10\cdots 07}{60\cdots 01}a^{3}+\frac{58\cdots 03}{60\cdots 01}a^{2}+\frac{13\cdots 95}{60\cdots 01}a+\frac{57\cdots 41}{60\cdots 01}$, $\frac{79\cdots 17}{60\cdots 01}a^{14}-\frac{28\cdots 77}{60\cdots 01}a^{13}-\frac{33\cdots 77}{60\cdots 01}a^{12}+\frac{64\cdots 08}{60\cdots 01}a^{11}+\frac{51\cdots 75}{60\cdots 01}a^{10}-\frac{37\cdots 43}{60\cdots 01}a^{9}-\frac{38\cdots 24}{60\cdots 01}a^{8}-\frac{10\cdots 98}{60\cdots 01}a^{7}+\frac{14\cdots 55}{60\cdots 01}a^{6}+\frac{16\cdots 73}{54\cdots 91}a^{5}-\frac{28\cdots 73}{60\cdots 01}a^{4}-\frac{61\cdots 79}{60\cdots 01}a^{3}+\frac{18\cdots 03}{60\cdots 01}a^{2}+\frac{66\cdots 10}{60\cdots 01}a+\frac{51\cdots 09}{60\cdots 01}$, $\frac{24\cdots 01}{60\cdots 01}a^{14}-\frac{87\cdots 03}{60\cdots 01}a^{13}-\frac{10\cdots 29}{60\cdots 01}a^{12}+\frac{19\cdots 64}{60\cdots 01}a^{11}+\frac{15\cdots 56}{60\cdots 01}a^{10}-\frac{10\cdots 62}{60\cdots 01}a^{9}-\frac{11\cdots 61}{60\cdots 01}a^{8}-\frac{38\cdots 94}{60\cdots 01}a^{7}+\frac{45\cdots 77}{60\cdots 01}a^{6}+\frac{52\cdots 28}{54\cdots 91}a^{5}-\frac{85\cdots 89}{60\cdots 01}a^{4}-\frac{19\cdots 82}{60\cdots 01}a^{3}+\frac{56\cdots 18}{60\cdots 01}a^{2}+\frac{20\cdots 02}{60\cdots 01}a+\frac{16\cdots 71}{60\cdots 01}$, $\frac{16\cdots 49}{60\cdots 01}a^{14}-\frac{11\cdots 03}{60\cdots 01}a^{13}-\frac{66\cdots 39}{60\cdots 01}a^{12}+\frac{32\cdots 13}{60\cdots 01}a^{11}+\frac{92\cdots 49}{60\cdots 01}a^{10}-\frac{33\cdots 54}{60\cdots 01}a^{9}-\frac{60\cdots 78}{60\cdots 01}a^{8}+\frac{14\cdots 96}{60\cdots 01}a^{7}+\frac{20\cdots 44}{60\cdots 01}a^{6}-\frac{21\cdots 93}{54\cdots 91}a^{5}-\frac{34\cdots 24}{60\cdots 01}a^{4}-\frac{81\cdots 77}{60\cdots 01}a^{3}+\frac{21\cdots 43}{60\cdots 01}a^{2}+\frac{34\cdots 51}{60\cdots 01}a+\frac{13\cdots 95}{60\cdots 01}$, $\frac{20\cdots 75}{54\cdots 91}a^{14}-\frac{77\cdots 19}{54\cdots 91}a^{13}-\frac{89\cdots 03}{54\cdots 91}a^{12}+\frac{21\cdots 60}{54\cdots 91}a^{11}+\frac{14\cdots 70}{54\cdots 91}a^{10}-\frac{21\cdots 27}{54\cdots 91}a^{9}-\frac{10\cdots 94}{54\cdots 91}a^{8}+\frac{82\cdots 86}{54\cdots 91}a^{7}+\frac{43\cdots 54}{54\cdots 91}a^{6}+\frac{42\cdots 20}{49\cdots 81}a^{5}-\frac{88\cdots 86}{54\cdots 91}a^{4}-\frac{92\cdots 47}{54\cdots 91}a^{3}+\frac{68\cdots 15}{54\cdots 91}a^{2}+\frac{14\cdots 34}{54\cdots 91}a+\frac{61\cdots 75}{54\cdots 91}$, $\frac{26\cdots 40}{60\cdots 01}a^{14}-\frac{25\cdots 55}{60\cdots 01}a^{13}-\frac{94\cdots 94}{60\cdots 01}a^{12}+\frac{74\cdots 88}{60\cdots 01}a^{11}+\frac{11\cdots 02}{60\cdots 01}a^{10}-\frac{71\cdots 98}{60\cdots 01}a^{9}-\frac{75\cdots 42}{60\cdots 01}a^{8}+\frac{28\cdots 88}{60\cdots 01}a^{7}+\frac{26\cdots 26}{60\cdots 01}a^{6}-\frac{37\cdots 43}{54\cdots 91}a^{5}-\frac{49\cdots 92}{60\cdots 01}a^{4}-\frac{22\cdots 57}{60\cdots 01}a^{3}+\frac{35\cdots 93}{60\cdots 01}a^{2}+\frac{77\cdots 55}{60\cdots 01}a+\frac{47\cdots 55}{60\cdots 01}$, $\frac{34\cdots 08}{60\cdots 01}a^{14}-\frac{39\cdots 05}{60\cdots 01}a^{13}-\frac{96\cdots 33}{60\cdots 01}a^{12}+\frac{10\cdots 88}{60\cdots 01}a^{11}+\frac{70\cdots 95}{60\cdots 01}a^{10}-\frac{83\cdots 83}{60\cdots 01}a^{9}-\frac{34\cdots 14}{60\cdots 01}a^{8}+\frac{26\cdots 58}{60\cdots 01}a^{7}-\frac{14\cdots 26}{60\cdots 01}a^{6}-\frac{45\cdots 20}{54\cdots 91}a^{5}+\frac{55\cdots 10}{60\cdots 01}a^{4}+\frac{12\cdots 58}{60\cdots 01}a^{3}-\frac{58\cdots 46}{60\cdots 01}a^{2}-\frac{20\cdots 09}{60\cdots 01}a-\frac{16\cdots 03}{60\cdots 01}$, $\frac{17\cdots 31}{60\cdots 01}a^{14}-\frac{12\cdots 67}{60\cdots 01}a^{13}-\frac{68\cdots 49}{60\cdots 01}a^{12}+\frac{36\cdots 88}{60\cdots 01}a^{11}+\frac{98\cdots 36}{60\cdots 01}a^{10}-\frac{39\cdots 73}{60\cdots 01}a^{9}-\frac{67\cdots 58}{60\cdots 01}a^{8}+\frac{18\cdots 14}{60\cdots 01}a^{7}+\frac{24\cdots 65}{60\cdots 01}a^{6}-\frac{28\cdots 70}{54\cdots 91}a^{5}-\frac{44\cdots 20}{60\cdots 01}a^{4}-\frac{91\cdots 01}{60\cdots 01}a^{3}+\frac{31\cdots 31}{60\cdots 01}a^{2}+\frac{53\cdots 61}{60\cdots 01}a+\frac{21\cdots 03}{60\cdots 01}$, $\frac{26\cdots 18}{60\cdots 01}a^{14}-\frac{29\cdots 49}{60\cdots 01}a^{13}-\frac{89\cdots 08}{60\cdots 01}a^{12}+\frac{87\cdots 77}{60\cdots 01}a^{11}+\frac{10\cdots 91}{60\cdots 01}a^{10}-\frac{85\cdots 02}{60\cdots 01}a^{9}-\frac{60\cdots 26}{60\cdots 01}a^{8}+\frac{36\cdots 36}{60\cdots 01}a^{7}+\frac{20\cdots 54}{60\cdots 01}a^{6}-\frac{60\cdots 86}{54\cdots 91}a^{5}-\frac{36\cdots 05}{60\cdots 01}a^{4}+\frac{24\cdots 75}{60\cdots 01}a^{3}+\frac{28\cdots 49}{60\cdots 01}a^{2}+\frac{38\cdots 87}{60\cdots 01}a+\frac{14\cdots 33}{60\cdots 01}$, $\frac{21\cdots 48}{60\cdots 01}a^{14}+\frac{63\cdots 41}{60\cdots 01}a^{13}-\frac{75\cdots 21}{60\cdots 01}a^{12}-\frac{27\cdots 59}{60\cdots 01}a^{11}+\frac{30\cdots 65}{60\cdots 01}a^{10}+\frac{38\cdots 23}{60\cdots 01}a^{9}+\frac{91\cdots 18}{60\cdots 01}a^{8}-\frac{23\cdots 59}{60\cdots 01}a^{7}-\frac{10\cdots 95}{60\cdots 01}a^{6}+\frac{50\cdots 63}{54\cdots 91}a^{5}+\frac{38\cdots 04}{60\cdots 01}a^{4}-\frac{55\cdots 27}{60\cdots 01}a^{3}-\frac{44\cdots 16}{60\cdots 01}a^{2}-\frac{10\cdots 09}{60\cdots 01}a-\frac{68\cdots 19}{60\cdots 01}$, $\frac{16\cdots 17}{60\cdots 01}a^{14}-\frac{80\cdots 66}{60\cdots 01}a^{13}-\frac{67\cdots 20}{60\cdots 01}a^{12}+\frac{21\cdots 10}{60\cdots 01}a^{11}+\frac{10\cdots 41}{60\cdots 01}a^{10}-\frac{19\cdots 71}{60\cdots 01}a^{9}-\frac{73\cdots 88}{60\cdots 01}a^{8}+\frac{62\cdots 07}{60\cdots 01}a^{7}+\frac{27\cdots 49}{60\cdots 01}a^{6}+\frac{45\cdots 12}{54\cdots 91}a^{5}-\frac{51\cdots 13}{60\cdots 01}a^{4}-\frac{59\cdots 54}{60\cdots 01}a^{3}+\frac{36\cdots 08}{60\cdots 01}a^{2}+\frac{77\cdots 51}{60\cdots 01}a+\frac{33\cdots 09}{60\cdots 01}$
|
| |
Regulator: | \( 2167432538320000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{0}\cdot 2167432538320000 \cdot 3}{2\cdot\sqrt{8995776251690372238394631846990504365561}}\cr\approx \mathstrut & 1.12322680867629 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 20160 |
The 14 conjugacy class representatives for $A_8$ |
Character table for $A_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 8 sibling: | 8.8.46664208361.1 |
Degree 28 sibling: | deg 28 |
Degree 35 sibling: | deg 35 |
Arithmetically equivalent sibling: | 15.15.8995776251690372238394631846990504365561.1 |
Minimal sibling: | 8.8.46664208361.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | ${\href{/padicField/19.7.0.1}{7} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $15$ | ${\href{/padicField/59.7.0.1}{7} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
17.1.2.1a1.1 | $x^{2} + 17$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
17.1.2.1a1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(97\)
| 97.5.3.10a1.1 | $x^{15} + 9 x^{11} + 276 x^{10} + 27 x^{7} + 1656 x^{6} + 25392 x^{5} + 27 x^{3} + 2581 x^{2} + 76176 x + 778688$ | $3$ | $5$ | $10$ | $C_{15}$ | $$[\ ]_{3}^{5}$$ |
\(131\)
| $\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
131.2.1.0a1.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
131.2.2.2a1.1 | $x^{4} + 254 x^{3} + 16133 x^{2} + 639 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
131.4.2.4a1.2 | $x^{8} + 18 x^{6} + 218 x^{5} + 85 x^{4} + 1962 x^{3} + 11917 x^{2} + 436 x + 135$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |