Normalized defining polynomial
\( x^{15} - 3 x^{14} - 424 x^{13} + 549 x^{12} + 65358 x^{11} - 5743 x^{10} - 4867029 x^{9} - 4560961 x^{8} + 186322787 x^{7} + 356354865 x^{6} - 3397215797 x^{5} - 10179835125 x^{4} + 18214687705 x^{3} + 99761473375 x^{2} + 121109770197 x + 42544769744 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8995776251690372238394631846990504365561=17^{6}\cdot 97^{10}\cdot 131^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $460.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{121} a^{13} - \frac{4}{121} a^{12} - \frac{27}{121} a^{11} - \frac{28}{121} a^{10} - \frac{38}{121} a^{9} - \frac{1}{11} a^{8} + \frac{35}{121} a^{7} + \frac{1}{11} a^{6} + \frac{40}{121} a^{5} - \frac{9}{121} a^{4} + \frac{46}{121} a^{3} - \frac{50}{121} a^{2} - \frac{6}{121} a + \frac{27}{121}$, $\frac{1}{60319904845095362539509965474232407638316130008505091898691101} a^{14} - \frac{222374795899712904586754346471618689419402787219804015548206}{60319904845095362539509965474232407638316130008505091898691101} a^{13} - \frac{13556694730889900582000023794888925321448811203861769467081557}{60319904845095362539509965474232407638316130008505091898691101} a^{12} + \frac{26662170998431734847188234824969920499596611426313417756810319}{60319904845095362539509965474232407638316130008505091898691101} a^{11} + \frac{6326118837452886524738302390677615569084517501085052019809597}{60319904845095362539509965474232407638316130008505091898691101} a^{10} + \frac{29943139242028941727635609101355523906650381773251227102441995}{60319904845095362539509965474232407638316130008505091898691101} a^{9} + \frac{3749860690469181660994858530920922333140833058418138927132862}{60319904845095362539509965474232407638316130008505091898691101} a^{8} - \frac{19619694537851784890496682182297316320962651829129244248642763}{60319904845095362539509965474232407638316130008505091898691101} a^{7} + \frac{1170516928626789710699089472442091071068010632266797291873832}{60319904845095362539509965474232407638316130008505091898691101} a^{6} - \frac{2055654858729691827798000490874730960506033579133184517481081}{5483627713190487503591815043112037058028739091682281081699191} a^{5} - \frac{25842945328969397369479571639080854552290580682108341876391319}{60319904845095362539509965474232407638316130008505091898691101} a^{4} + \frac{24691395369640370967218702504725709851426789128273027823718144}{60319904845095362539509965474232407638316130008505091898691101} a^{3} - \frac{30147643212757234204219353257672969387421708484788876270064367}{60319904845095362539509965474232407638316130008505091898691101} a^{2} + \frac{28870920134249811720904161668530011393373561185250356850301811}{60319904845095362539509965474232407638316130008505091898691101} a + \frac{22741047145038491465204967712617277858731377484884594122229219}{60319904845095362539509965474232407638316130008505091898691101}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2167432538320000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_8$ (as 15T72):
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 131.4.2.2 | $x^{4} - 131 x^{2} + 240254$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 131.8.4.1 | $x^{8} + 205932 x^{4} - 2248091 x^{2} + 10601997156$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |