Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $72$ | |
| Group : | $A_8$ | |
| CHM label : | $L(15)=A_{8}(15)=PSL(4,2)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,5)(2,7)(3,6)(4,15)(8,9)(12,13), (1,2,15)(4,5,6)(8,9,10)(12,13,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: None
Low degree siblings
8T49, 15T72, 28T433, 35T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7, 1 $ | $2880$ | $7$ | $( 1, 4, 6, 9, 3,11,12)( 2,10,13,15, 5, 7, 8)$ |
| $ 7, 7, 1 $ | $2880$ | $7$ | $( 1,12,11, 3, 9, 6, 4)( 2, 8, 7, 5,15,13,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $210$ | $2$ | $( 1, 6)( 3, 9)( 4,14)( 7,10)(11,12)(13,15)$ |
| $ 4, 4, 4, 2, 1 $ | $2520$ | $4$ | $( 1,11, 6,12)( 2, 5)( 3,13, 9,15)( 4,10,14, 7)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $1120$ | $3$ | $( 1,12,15)( 2, 3,14)( 4, 5, 8)( 6, 7,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1, 7)( 6,15)(10,12)(11,13)$ |
| $ 4, 4, 2, 2, 1, 1, 1 $ | $1260$ | $4$ | $( 1,15,11,10)( 2, 8)( 4,14)( 6,13,12, 7)$ |
| $ 3, 3, 3, 3, 3 $ | $112$ | $3$ | $( 1, 4,10)( 2,14, 3)( 5, 6,12)( 7,15, 8)( 9,11,13)$ |
| $ 6, 6, 3 $ | $1680$ | $6$ | $( 1, 5, 4, 6,10,12)( 2,11,14,13, 3, 9)( 7, 8,15)$ |
| $ 5, 5, 5 $ | $1344$ | $5$ | $( 1, 8, 9,12, 3)( 2, 4, 7,11, 5)( 6,14,10,15,13)$ |
| $ 15 $ | $1344$ | $15$ | $( 1,11,14, 8, 5,10, 9, 2,15,12, 4,13, 3, 7, 6)$ |
| $ 15 $ | $1344$ | $15$ | $( 1,13, 2, 8, 6, 4, 9,14, 7,12,10,11, 3,15, 5)$ |
| $ 6, 3, 3, 2, 1 $ | $3360$ | $6$ | $( 1,11, 3)( 2,12, 8, 4,10,14)( 5, 7,13)( 6,15)$ |
Group invariants
| Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 6 1 1 2 5 2 . . . . . 3 4
3 2 1 2 1 2 1 1 . . 1 1 1 . .
5 1 . . . 1 . . . . 1 1 1 . .
7 1 . . . . . . 1 1 . . . . .
1a 2a 3a 6a 3b 2b 6b 7a 7b 5a 15a 15b 4a 4b
2P 1a 1a 3a 3a 3b 1a 3b 7a 7b 5a 15a 15b 2b 2a
3P 1a 2a 1a 2a 1a 2b 2b 7b 7a 5a 5a 5a 4a 4b
5P 1a 2a 3a 6a 3b 2b 6b 7b 7a 1a 3b 3b 4a 4b
7P 1a 2a 3a 6a 3b 2b 6b 1a 1a 5a 15b 15a 4a 4b
11P 1a 2a 3a 6a 3b 2b 6b 7a 7b 5a 15b 15a 4a 4b
13P 1a 2a 3a 6a 3b 2b 6b 7b 7a 5a 15b 15a 4a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 7 -1 1 -1 4 3 . . . 2 -1 -1 1 -1
X.3 14 6 2 . -1 2 -1 . . -1 -1 -1 . 2
X.4 20 4 -1 1 5 4 1 -1 -1 . . . . .
X.5 21 -3 . . 6 1 -2 . . 1 1 1 -1 1
X.6 21 -3 . . -3 1 1 . . 1 B /B -1 1
X.7 21 -3 . . -3 1 1 . . 1 /B B -1 1
X.8 28 -4 1 -1 1 4 1 . . -2 1 1 . .
X.9 35 3 2 . 5 -5 1 . . . . . -1 -1
X.10 45 -3 . . . -3 . A /A . . . 1 1
X.11 45 -3 . . . -3 . /A A . . . 1 1
X.12 56 8 -1 -1 -4 . . . . 1 1 1 . .
X.13 64 . -2 . 4 . . 1 1 -1 -1 -1 . .
X.14 70 -2 1 1 -5 2 -1 . . . . . . -2
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
B = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15
|