Normalized defining polynomial
\( x^{15} - 6 x^{14} - 257 x^{13} + 1324 x^{12} + 27855 x^{11} - 118255 x^{10} - 1652403 x^{9} + 5430859 x^{8} + 57970302 x^{7} - 133259637 x^{6} - 1201212236 x^{5} + 1588829161 x^{4} + 13548454466 x^{3} - 5570564384 x^{2} - 63519704967 x - 24112791818 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8995776251690372238394631846990504365561=17^{6}\cdot 97^{10}\cdot 131^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $460.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{312360664998219959086828380611081839712326549} a^{14} - \frac{122247677044185801607530123561682947648456615}{312360664998219959086828380611081839712326549} a^{13} + \frac{17871418476837897466387073040547383789164619}{44622952142602851298118340087297405673189507} a^{12} + \frac{41301568675412850336495187916201999217848848}{312360664998219959086828380611081839712326549} a^{11} + \frac{72992471963102361576306321629610578740924501}{312360664998219959086828380611081839712326549} a^{10} - \frac{125599200018648571201176251820434393551503463}{312360664998219959086828380611081839712326549} a^{9} + \frac{46106912666074670902280162871770328509026700}{312360664998219959086828380611081839712326549} a^{8} - \frac{121917585186820541768929379712809974013796752}{312360664998219959086828380611081839712326549} a^{7} - \frac{6412814787865166983163082826604435913960905}{44622952142602851298118340087297405673189507} a^{6} - \frac{1739695366712408898788222234651043201509369}{44622952142602851298118340087297405673189507} a^{5} - \frac{9353630828530943034628094473894509121411634}{44622952142602851298118340087297405673189507} a^{4} - \frac{40112509090115232794892643587836271749627760}{312360664998219959086828380611081839712326549} a^{3} - \frac{99381125940700168123470979785815960650605115}{312360664998219959086828380611081839712326549} a^{2} + \frac{1345471886523433214371967385056210093088469}{6645971595706807640145284693852805100262267} a + \frac{43877071719914016364896985386955624748204448}{312360664998219959086828380611081839712326549}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2167432538320000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_8$ (as 15T72):
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 131.4.2.2 | $x^{4} - 131 x^{2} + 240254$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 131.8.4.1 | $x^{8} + 205932 x^{4} - 2248091 x^{2} + 10601997156$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |