Properties

Label 8.0.6973082515456.1
Degree $8$
Signature $[0, 4]$
Discriminant $6.973\times 10^{12}$
Root discriminant \(40.31\)
Ramified primes $2,23$
Class number $6$
Class group [6]
Galois group $Z_8 : Z_8^\times$ (as 8T15)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736)
 
Copy content gp:K = bnfinit(y^8 - 23*y^6 + 230*y^4 - 736*y^2 + 736, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736)
 

\( x^{8} - 23x^{6} + 230x^{4} - 736x^{2} + 736 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $8$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(6973082515456\) \(\medspace = 2^{11}\cdot 23^{7}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(40.31\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{2}23^{7/8}\approx 62.16870885296182$
Ramified primes:   \(2\), \(23\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{46}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-23}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{4}-\frac{1}{6}a^{2}+\frac{1}{3}$, $\frac{1}{12}a^{5}-\frac{1}{12}a^{3}-\frac{1}{2}a^{2}+\frac{1}{6}a$, $\frac{1}{48}a^{6}-\frac{1}{16}a^{4}+\frac{5}{24}a^{2}+\frac{1}{6}$, $\frac{1}{192}a^{7}-\frac{1}{96}a^{6}-\frac{1}{64}a^{5}+\frac{1}{32}a^{4}+\frac{5}{96}a^{3}+\frac{19}{48}a^{2}-\frac{11}{24}a-\frac{1}{12}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{6}$, which has order $6$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{6}$, which has order $6$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $3$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{64}a^{7}+\frac{1}{32}a^{6}-\frac{19}{64}a^{5}-\frac{19}{32}a^{4}+\frac{77}{32}a^{3}+\frac{77}{16}a^{2}-\frac{15}{8}a-\frac{19}{4}$, $\frac{1}{24}a^{6}-\frac{115}{24}a^{4}+\frac{253}{12}a^{2}-24$, $\frac{3113}{192}a^{7}-\frac{2893}{96}a^{6}-\frac{61243}{192}a^{5}+\frac{57575}{96}a^{4}+\frac{84799}{32}a^{3}-\frac{80715}{16}a^{2}-\frac{66563}{24}a+\frac{72691}{12}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2026.13648654 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2026.13648654 \cdot 6}{2\cdot\sqrt{6973082515456}}\cr\approx \mathstrut & 3.58754224098 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 23*x^6 + 230*x^4 - 736*x^2 + 736); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_8:C_2$ (as 8T15):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 11 conjugacy class representatives for $Z_8 : Z_8^\times$
Character table for $Z_8 : Z_8^\times$

Intermediate fields

\(\Q(\sqrt{-23}) \), 4.0.97336.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 siblings: deg 16, deg 16, deg 16, deg 16
Arithmetically equivalent sibling: 8.0.6973082515456.2
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{2}$ ${\href{/padicField/5.4.0.1}{4} }^{2}$ ${\href{/padicField/7.2.0.1}{2} }^{4}$ ${\href{/padicField/11.8.0.1}{8} }$ ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }$ ${\href{/padicField/19.8.0.1}{8} }$ R ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }$ ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$$[\ ]$$
2.1.2.3a1.1$x^{2} + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.4.8b1.1$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$$[2, 3]$$
\(23\) Copy content Toggle raw display 23.1.8.7a1.1$x^{8} + 23$$8$$1$$7$$D_{8}$$$[\ ]_{8}^{2}$$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
*32 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
*32 1.23.2t1.a.a$1$ $ 23 $ \(\Q(\sqrt{-23}) \) $C_2$ (as 2T1) $1$ $-1$
1.92.2t1.a.a$1$ $ 2^{2} \cdot 23 $ \(\Q(\sqrt{23}) \) $C_2$ (as 2T1) $1$ $1$
1.184.2t1.a.a$1$ $ 2^{3} \cdot 23 $ \(\Q(\sqrt{46}) \) $C_2$ (as 2T1) $1$ $1$
1.184.2t1.b.a$1$ $ 2^{3} \cdot 23 $ \(\Q(\sqrt{-46}) \) $C_2$ (as 2T1) $1$ $-1$
1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
*32 2.4232.4t3.b.a$2$ $ 2^{3} \cdot 23^{2}$ 4.0.97336.1 $D_{4}$ (as 4T3) $1$ $0$
2.16928.4t3.a.a$2$ $ 2^{5} \cdot 23^{2}$ 4.0.389344.1 $D_{4}$ (as 4T3) $1$ $0$
*32 4.71639296.8t15.a.a$4$ $ 2^{8} \cdot 23^{4}$ 8.0.6973082515456.1 $Z_8 : Z_8^\times$ (as 8T15) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)