Properties

Label 23.1.8.7a1.1
Base \(\Q_{23}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(7\)
Galois group $D_{8}$ (as 8T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 23\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $7$
Discriminant root field: $\Q_{23}(\sqrt{23})$
Root number: $i$
$\Aut(K/\Q_{23})$: $C_2$
This field is not Galois over $\Q_{23}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$22 = (23 - 1)$

Intermediate fields

$\Q_{23}(\sqrt{23\cdot 5})$, 23.1.4.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{23}$
Relative Eisenstein polynomial: \( x^{8} + 23 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 8 z^6 + 5 z^5 + 10 z^4 + z^3 + 10 z^2 + 5 z + 8$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $D_8$ (as 8T6)
Inertia group: $C_8$ (as 8T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:not computed