Properties

Label 23.1.1.0a1.1
Base \(\Q_{23}\)
Degree \(1\)
e \(1\)
f \(1\)
c \(0\)
Galois group Trivial (as 1T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x + 18\) Copy content Toggle raw display

Invariants

Base field: $\Q_{23}$
Degree $d$: $1$
Ramification index $e$: $1$
Residue field degree $f$: $1$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{23}$
Root number: $1$
$\Aut(K/\Q_{23})$ $=$$\Gal(K/\Q_{23})$: $C_1$
This field is Galois and abelian over $\Q_{23}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$22 = (23 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 23 }$.

Canonical tower

Unramified subfield:$\Q_{23}$
Relative Eisenstein polynomial: \( x - 23 \) Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $1$
Galois group: $C_1$ (as 1T1)
Inertia group: $C_1$ (as 1T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x$